Spaces:
Sleeping
Sleeping
import os | |
import re | |
import requests | |
import gradio as gr | |
from moviepy.editor import * | |
import edge_tts | |
import tempfile | |
import logging | |
from datetime import datetime | |
import numpy as np | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
import nltk | |
from transformers import pipeline | |
import torch | |
import asyncio | |
import time | |
# Configuraci贸n inicial | |
nltk.download('punkt', quiet=True) | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# Configuraci贸n de modelos | |
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY") | |
MODEL_NAME = "DeepESP/gpt2-spanish" # Modelo en espa帽ol | |
# Lista de voces disponibles | |
VOICES = asyncio.run(edge_tts.list_voices()) | |
VOICE_NAMES = [f"{v['Name']} ({v['Gender']}, {v['LocaleName']})" for v in VOICES] | |
def generar_guion_profesional(prompt): | |
"""Genera guiones detallados""" | |
generator = pipeline( | |
"text-generation", | |
model=MODEL_NAME, | |
device=0 if torch.cuda.is_available() else -1 | |
) | |
response = generator( | |
f"Escribe un guion profesional para un video de YouTube sobre '{prompt}':", | |
max_length=600, | |
temperature=0.7, | |
num_return_sequences=1 | |
) | |
return response[0]['generated_text'] | |
def buscar_videos_avanzado(prompt, guion, num_videos=5): | |
"""B煤squeda inteligente de videos usando an谩lisis de contenido""" | |
# Dividir el guion en oraciones | |
oraciones = nltk.sent_tokenize(guion) | |
# Extraer palabras clave con TF-IDF | |
vectorizer = TfidfVectorizer(stop_words=['el', 'la', 'los', 'las', 'de', 'en', 'y', 'que']) | |
tfidf = vectorizer.fit_transform(oraciones) | |
palabras = vectorizer.get_feature_names_out() | |
scores = np.asarray(tfidf.sum(axis=0)).ravel() | |
indices_importantes = np.argsort(scores)[-5:] | |
palabras_clave = [palabras[i] for i in indices_importantes] | |
# Mezclar palabras clave del prompt y del guion | |
palabras_prompt = re.findall(r'\b\w{4,}\b', prompt.lower()) | |
todas_palabras = list(set(palabras_clave + palabras_prompt))[:5] | |
# Buscar en Pexels | |
headers = {"Authorization": PEXELS_API_KEY} | |
response = requests.get( | |
f"https://api.pexels.com/videos/search?query={'+'.join(todas_palabras)}&per_page={num_videos}", | |
headers=headers, | |
timeout=10 | |
) | |
videos = response.json().get('videos', []) | |
# Seleccionar videos de mejor calidad | |
return sorted( | |
videos, | |
key=lambda x: x.get('width', 0) * x.get('height', 0), | |
reverse=True | |
)[:num_videos] | |
async def crear_video_profesional(prompt, custom_script, voz_index, musica=None): | |
try: | |
# 1. Generar o usar guion | |
guion = custom_script if custom_script else generar_guion_profesional(prompt) | |
# 2. Seleccionar voz | |
voz_seleccionada = VOICES[voz_index]['ShortName'] | |
# 3. Generar voz | |
voz_archivo = "voz.mp3" | |
await edge_tts.Communicate(guion, voz_seleccionada).save(voz_archivo) | |
audio = AudioFileClip(voz_archivo) | |
duracion_total = audio.duration | |
# 4. Buscar videos relevantes | |
videos_data = buscar_videos_avanzado(prompt, guion) | |
# 5. Descargar y preparar videos | |
clips = [] | |
for video in videos_data: | |
# Seleccionar la mejor calidad de video | |
video_files = sorted( | |
video['video_files'], | |
key=lambda x: x.get('width', 0) * x.get('height', 0), | |
reverse=True | |
) | |
video_url = video_files[0]['link'] | |
# Descargar video | |
response = requests.get(video_url, stream=True) | |
temp_video = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') | |
for chunk in response.iter_content(chunk_size=1024*1024): | |
temp_video.write(chunk) | |
temp_video.close() | |
# Crear clip | |
clip = VideoFileClip(temp_video.name) | |
clips.append(clip) | |
# 6. Calcular duraci贸n por clip | |
duracion_por_clip = duracion_total / len(clips) | |
# 7. Procesar clips de video | |
clips_procesados = [] | |
for clip in clips: | |
# Si el clip es m谩s corto que la duraci贸n asignada, hacer loop | |
if clip.duration < duracion_por_clip: | |
clip = clip.loop(duration=duracion_por_clip) | |
# Si es m谩s largo, recortar | |
else: | |
clip = clip.subclip(0, duracion_por_clip) | |
clips_procesados.append(clip) | |
# 8. Combinar videos | |
video_final = concatenate_videoclips(clips_procesados) | |
# 9. Procesar m煤sica | |
if musica: | |
musica_clip = AudioFileClip(musica.name) | |
if musica_clip.duration < duracion_total: | |
musica_clip = musica_clip.loop(duration=duracion_total) | |
else: | |
musica_clip = musica_clip.subclip(0, duracion_total) | |
audio = CompositeAudioClip([audio, musica_clip.volumex(0.25)]) | |
video_final = video_final.set_audio(audio) | |
# 10. Exportar video | |
output_path = f"video_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4" | |
video_final.write_videofile( | |
output_path, | |
codec="libx264", | |
audio_codec="aac", | |
threads=4, | |
preset='ultrafast', | |
fps=24, | |
logger=None | |
) | |
return output_path | |
except Exception as e: | |
logger.error(f"ERROR: {str(e)}") | |
return None | |
finally: | |
# Limpieza de archivos temporales | |
if os.path.exists(voz_archivo): | |
os.remove(voz_archivo) | |
# Funci贸n para ejecutar la tarea as铆ncrona con manejo de progreso | |
def run_async_task(prompt, custom_script, voz_index, musica=None): | |
for i in range(5): | |
time.sleep(0.5) # Simular progreso | |
return asyncio.run(crear_video_profesional(prompt, custom_script, voz_index, musica)) | |
# Interfaz profesional | |
with gr.Blocks(theme=gr.themes.Soft(), title="Generador de Videos") as app: | |
gr.Markdown("# 馃幀 GENERADOR DE VIDEOS CON IA") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Configuraci贸n") | |
prompt = gr.Textbox(label="Tema principal", placeholder="Ej: 'Los misterios de la antigua Grecia'") | |
custom_script = gr.TextArea( | |
label="Guion personalizado (opcional)", | |
placeholder="Pega aqu铆 tu propio guion completo...", | |
lines=6 | |
) | |
voz = gr.Dropdown( | |
label="Voz", | |
choices=VOICE_NAMES, | |
value=VOICE_NAMES[0], | |
type="index" | |
) | |
musica = gr.File(label="M煤sica de fondo (opcional)", file_types=["audio"]) | |
btn = gr.Button("馃殌 Generar Video", variant="primary") | |
with gr.Column(scale=2): | |
output = gr.Video(label="Video Resultante", format="mp4") | |
gr.Examples( | |
examples=[ | |
["Los secretos de las pir谩mides egipcias", "", 5, None], | |
["La inteligencia artificial en medicina", "", 3, None] | |
], | |
inputs=[prompt, custom_script, voz, musica], | |
label="Ejemplos" | |
) | |
btn.click( | |
fn=run_async_task, | |
inputs=[prompt, custom_script, voz, musica], | |
outputs=output | |
) | |
if __name__ == "__main__": | |
app.launch(server_name="0.0.0.0", server_port=7860) |