Spaces:
Runtime error
Runtime error
import os | |
import re | |
import requests | |
import gradio as gr | |
from moviepy.editor import * | |
import edge_tts | |
import tempfile | |
import logging | |
from datetime import datetime | |
import numpy as np | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
import nltk | |
from nltk.tokenize import sent_tokenize | |
from transformers import pipeline | |
import torch | |
import asyncio | |
# Configuraci贸n inicial | |
nltk.download('punkt', quiet=True) | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# Configuraci贸n de modelos | |
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY") | |
MODEL_NAME = "DeepESP/gpt2-spanish" | |
# Soluci贸n robusta para obtener voces | |
async def get_voices(): | |
try: | |
voices = await edge_tts.list_voices() | |
voice_names = [] | |
for v in voices: | |
try: | |
name = v.get('Name', v.get('ShortName', 'Desconocido')) | |
gender = v.get('Gender', 'Desconocido') | |
locale = v.get('Locale', v.get('Language', 'Desconocido')) | |
voice_names.append(f"{name} ({gender}, {locale})") | |
except Exception as e: | |
logger.warning(f"Error procesando voz: {v} - {str(e)}") | |
continue | |
return voice_names, voices | |
except Exception as e: | |
logger.error(f"Error al obtener voces: {str(e)}") | |
return [], [] | |
# Obtener voces de forma s铆ncrona para la inicializaci贸n | |
VOICE_NAMES, VOICES = asyncio.run(get_voices()) | |
if not VOICES: | |
VOICE_NAMES = ["Voz Predeterminada (Femenino, es-ES)"] | |
VOICES = [{'ShortName': 'es-ES-ElviraNeural'}] | |
def generar_guion_profesional(prompt): | |
"""Genera guiones con respaldo robusto""" | |
try: | |
generator = pipeline( | |
"text-generation", | |
model=MODEL_NAME, | |
device=0 if torch.cuda.is_available() else -1 | |
) | |
response = generator( | |
f"Escribe un guion profesional para un video de YouTube sobre '{prompt}':\n\n1. Introducci贸n\n2. Desarrollo\n3. Conclusi贸n\n\n", | |
max_length=800, | |
temperature=0.7, | |
num_return_sequences=1 | |
) | |
return response[0]['generated_text'] | |
except Exception as e: | |
logger.error(f"Error generando guion: {str(e)}") | |
return f"""Gui贸n de respaldo sobre {prompt}: | |
1. INTRODUCCI脫N: Hoy exploraremos {prompt} | |
2. DESARROLLO: Aspectos clave sobre el tema | |
3. CONCLUSI脫N: Resumen y cierre""" | |
def buscar_videos_avanzado(prompt, guion, num_videos=3): | |
"""B煤squeda con m煤ltiples respaldos""" | |
try: | |
palabras = re.findall(r'\b\w{4,}\b', prompt.lower())[:5] | |
response = requests.get( | |
f"https://api.pexels.com/videos/search?query={'+'.join(palabras)}&per_page={num_videos}", | |
headers={"Authorization": PEXELS_API_KEY}, | |
timeout=10 | |
) | |
return response.json().get('videos', [])[:num_videos] | |
except Exception as e: | |
logger.error(f"Error buscando videos: {str(e)}") | |
return [] | |
async def crear_video_profesional(prompt, custom_script, voz_index, musica=None): | |
try: | |
# 1. Generar gui贸n | |
guion = custom_script if custom_script else generar_guion_profesional(prompt) | |
# 2. Configurar voz | |
voz_seleccionada = VOICES[voz_index]['ShortName'] if VOICES else 'es-ES-ElviraNeural' | |
# 3. Generar audio | |
voz_archivo = "voz.mp3" | |
await edge_tts.Communicate(guion, voz_seleccionada).save(voz_archivo) | |
audio = AudioFileClip(voz_archivo) | |
# 4. Obtener videos | |
videos_data = buscar_videos_avanzado(prompt, guion) | |
if not videos_data: | |
raise Exception("No se encontraron videos") | |
# 5. Procesar videos | |
clips = [] | |
for video in videos_data[:3]: # Usar m谩ximo 3 videos | |
video_file = next((vf for vf in video['video_files'] if vf['quality'] == 'sd'), video['video_files'][0]) | |
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video: | |
response = requests.get(video_file['link'], stream=True) | |
for chunk in response.iter_content(chunk_size=1024*1024): | |
temp_video.write(chunk) | |
clip = VideoFileClip(temp_video.name).subclip(0, min(10, video['duration'])) | |
clips.append(clip) | |
# 6. Crear video final | |
video_final = concatenate_videoclips(clips) | |
video_final = video_final.set_audio(audio) | |
output_path = f"video_output_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4" | |
video_final.write_videofile(output_path, fps=24, threads=2) | |
return output_path | |
except Exception as e: | |
logger.error(f"Error cr铆tico: {str(e)}") | |
return None | |
finally: | |
if os.path.exists(voz_archivo): | |
os.remove(voz_archivo) | |
# Interfaz optimizada | |
with gr.Blocks(title="Generador de Videos") as app: | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Tema del video") | |
custom_script = gr.TextArea(label="Gui贸n personalizado (opcional)") | |
voz = gr.Dropdown(VOICE_NAMES, label="Voz", value=VOICE_NAMES[0]) | |
btn = gr.Button("Generar Video", variant="primary") | |
with gr.Column(): | |
output = gr.Video(label="Resultado", format="mp4") | |
btn.click( | |
fn=lambda p, cs, v: asyncio.run(crear_video_profesional(p, cs, VOICE_NAMES.index(v))), | |
inputs=[prompt, custom_script, voz], | |
outputs=output | |
) | |
if __name__ == "__main__": | |
app.launch(server_name="0.0.0.0", server_port=7860) |