INVIDEO_BASIC / app.py
gnosticdev's picture
Update app.py
99b44b3 verified
raw
history blame
5.72 kB
import os
import re
import requests
import gradio as gr
from moviepy.editor import *
import edge_tts
import tempfile
import logging
from datetime import datetime
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
import nltk
from nltk.tokenize import sent_tokenize
from transformers import pipeline
import torch
import asyncio
# Configuraci贸n inicial
nltk.download('punkt', quiet=True)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Configuraci贸n de modelos
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
MODEL_NAME = "DeepESP/gpt2-spanish"
# Soluci贸n robusta para obtener voces
async def get_voices():
try:
voices = await edge_tts.list_voices()
voice_names = []
for v in voices:
try:
name = v.get('Name', v.get('ShortName', 'Desconocido'))
gender = v.get('Gender', 'Desconocido')
locale = v.get('Locale', v.get('Language', 'Desconocido'))
voice_names.append(f"{name} ({gender}, {locale})")
except Exception as e:
logger.warning(f"Error procesando voz: {v} - {str(e)}")
continue
return voice_names, voices
except Exception as e:
logger.error(f"Error al obtener voces: {str(e)}")
return [], []
# Obtener voces de forma s铆ncrona para la inicializaci贸n
VOICE_NAMES, VOICES = asyncio.run(get_voices())
if not VOICES:
VOICE_NAMES = ["Voz Predeterminada (Femenino, es-ES)"]
VOICES = [{'ShortName': 'es-ES-ElviraNeural'}]
def generar_guion_profesional(prompt):
"""Genera guiones con respaldo robusto"""
try:
generator = pipeline(
"text-generation",
model=MODEL_NAME,
device=0 if torch.cuda.is_available() else -1
)
response = generator(
f"Escribe un guion profesional para un video de YouTube sobre '{prompt}':\n\n1. Introducci贸n\n2. Desarrollo\n3. Conclusi贸n\n\n",
max_length=800,
temperature=0.7,
num_return_sequences=1
)
return response[0]['generated_text']
except Exception as e:
logger.error(f"Error generando guion: {str(e)}")
return f"""Gui贸n de respaldo sobre {prompt}:
1. INTRODUCCI脫N: Hoy exploraremos {prompt}
2. DESARROLLO: Aspectos clave sobre el tema
3. CONCLUSI脫N: Resumen y cierre"""
def buscar_videos_avanzado(prompt, guion, num_videos=3):
"""B煤squeda con m煤ltiples respaldos"""
try:
palabras = re.findall(r'\b\w{4,}\b', prompt.lower())[:5]
response = requests.get(
f"https://api.pexels.com/videos/search?query={'+'.join(palabras)}&per_page={num_videos}",
headers={"Authorization": PEXELS_API_KEY},
timeout=10
)
return response.json().get('videos', [])[:num_videos]
except Exception as e:
logger.error(f"Error buscando videos: {str(e)}")
return []
async def crear_video_profesional(prompt, custom_script, voz_index, musica=None):
try:
# 1. Generar gui贸n
guion = custom_script if custom_script else generar_guion_profesional(prompt)
# 2. Configurar voz
voz_seleccionada = VOICES[voz_index]['ShortName'] if VOICES else 'es-ES-ElviraNeural'
# 3. Generar audio
voz_archivo = "voz.mp3"
await edge_tts.Communicate(guion, voz_seleccionada).save(voz_archivo)
audio = AudioFileClip(voz_archivo)
# 4. Obtener videos
videos_data = buscar_videos_avanzado(prompt, guion)
if not videos_data:
raise Exception("No se encontraron videos")
# 5. Procesar videos
clips = []
for video in videos_data[:3]: # Usar m谩ximo 3 videos
video_file = next((vf for vf in video['video_files'] if vf['quality'] == 'sd'), video['video_files'][0])
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
response = requests.get(video_file['link'], stream=True)
for chunk in response.iter_content(chunk_size=1024*1024):
temp_video.write(chunk)
clip = VideoFileClip(temp_video.name).subclip(0, min(10, video['duration']))
clips.append(clip)
# 6. Crear video final
video_final = concatenate_videoclips(clips)
video_final = video_final.set_audio(audio)
output_path = f"video_output_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4"
video_final.write_videofile(output_path, fps=24, threads=2)
return output_path
except Exception as e:
logger.error(f"Error cr铆tico: {str(e)}")
return None
finally:
if os.path.exists(voz_archivo):
os.remove(voz_archivo)
# Interfaz optimizada
with gr.Blocks(title="Generador de Videos") as app:
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Tema del video")
custom_script = gr.TextArea(label="Gui贸n personalizado (opcional)")
voz = gr.Dropdown(VOICE_NAMES, label="Voz", value=VOICE_NAMES[0])
btn = gr.Button("Generar Video", variant="primary")
with gr.Column():
output = gr.Video(label="Resultado", format="mp4")
btn.click(
fn=lambda p, cs, v: asyncio.run(crear_video_profesional(p, cs, VOICE_NAMES.index(v))),
inputs=[prompt, custom_script, voz],
outputs=output
)
if __name__ == "__main__":
app.launch(server_name="0.0.0.0", server_port=7860)