Spaces:
Runtime error
Runtime error
import os | |
import re | |
import requests | |
import gradio as gr | |
from moviepy.editor import * | |
import edge_tts | |
import tempfile | |
import logging | |
from datetime import datetime | |
import numpy as np | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
import nltk | |
import random | |
from transformers import pipeline | |
import torch | |
import asyncio | |
nltk.download('punkt', quiet=True) | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY") | |
MODEL_NAME = "DeepESP/gpt2-spanish" | |
# Obtener voces de edge-tts de forma síncrona (wrapper) | |
def get_voices_sync(): | |
return asyncio.run(edge_tts.list_voices()) | |
VOICES = get_voices_sync() | |
VOICE_NAMES = [f"{v['Name']} ({v['Gender']}, {v.get('LocaleName', 'Unknown')})" for v in VOICES] | |
def generar_guion_profesional(prompt): | |
try: | |
generator = pipeline( | |
"text-generation", | |
model=MODEL_NAME, | |
device=0 if torch.cuda.is_available() else -1 | |
) | |
response = generator( | |
f"Escribe un guion profesional para un video de YouTube sobre '{prompt}'. " | |
"La estructura debe incluir:\n" | |
"1. Introducción atractiva\n" | |
"2. Tres secciones detalladas con subtítulos\n" | |
"3. Conclusión impactante\n" | |
"Usa un estilo natural para narración:", | |
max_length=1000, | |
temperature=0.7, | |
top_k=50, | |
top_p=0.95, | |
num_return_sequences=1, | |
truncation=True | |
) | |
guion = response[0]['generated_text'] | |
if len(guion.split()) < 100: | |
raise ValueError("Guion demasiado breve") | |
return guion | |
except Exception as e: | |
logger.error(f"Error generando guion: {str(e)}") | |
temas = { | |
"historia": ["orígenes", "eventos clave", "impacto actual"], | |
"tecnología": ["funcionamiento", "aplicaciones", "futuro"], | |
"ciencia": ["teorías", "evidencia", "implicaciones"], | |
"misterio": ["enigma", "teorías", "explicaciones"], | |
"arte": ["orígenes", "características", "influencia"] | |
} | |
categoria = "general" | |
for key in temas: | |
if key in prompt.lower(): | |
categoria = key | |
break | |
puntos_clave = temas.get(categoria, ["aspectos importantes", "datos relevantes", "conclusiones"]) | |
return f""" | |
¡Hola a todos! Bienvenidos a este análisis completo sobre {prompt}. | |
En este video exploraremos a fondo este fascinante tema a través de tres secciones clave. | |
SECCIÓN 1: {puntos_clave[0].capitalize()} | |
Comenzaremos analizando los {puntos_clave[0]} fundamentales. | |
Esto nos permitirá entender mejor la base de {prompt}. | |
SECCIÓN 2: {puntos_clave[1].capitalize()} | |
En esta parte, examinaremos los {puntos_clave[1]} más relevantes | |
y cómo se relacionan con el tema principal. | |
SECCIÓN 3: {puntos_clave[2].capitalize()} | |
Finalmente, exploraremos las {puntos_clave[2]} | |
y qué significan para el futuro de este campo. | |
¿Listos para profundizar? ¡Empecemos! | |
""" | |
from nltk.tokenize import sent_tokenize | |
def buscar_videos_avanzado(prompt, guion, num_videos=5): | |
try: | |
oraciones = sent_tokenize(guion) | |
vectorizer = TfidfVectorizer(stop_words=['el', 'la', 'los', 'las', 'de', 'en', 'y', 'que']) | |
tfidf = vectorizer.fit_transform(oraciones) | |
palabras = vectorizer.get_feature_names_out() | |
scores = np.asarray(tfidf.sum(axis=0)).ravel() | |
indices_importantes = np.argsort(scores)[-5:] | |
palabras_clave = [palabras[i] for i in indices_importantes] | |
palabras_prompt = re.findall(r'\b\w{4,}\b', prompt.lower()) | |
todas_palabras = list(set(palabras_clave + palabras_prompt))[:5] | |
headers = {"Authorization": PEXELS_API_KEY} | |
response = requests.get( | |
f"https://api.pexels.com/videos/search?query={'+'.join(todas_palabras)}&per_page={num_videos}", | |
headers=headers, | |
timeout=15 | |
) | |
videos = response.json().get('videos', []) | |
logger.info(f"Palabras clave usadas: {todas_palabras}") | |
videos_ordenados = sorted( | |
videos, | |
key=lambda x: x.get('width', 0) * x.get('height', 0), | |
reverse=True | |
) | |
return videos_ordenados[:num_videos] | |
except Exception as e: | |
logger.error(f"Error en búsqueda de videos: {str(e)}") | |
response = requests.get( | |
f"https://api.pexels.com/videos/search?query={prompt}&per_page={num_videos}", | |
headers={"Authorization": PEXELS_API_KEY}, | |
timeout=10 | |
) | |
return response.json().get('videos', [])[:num_videos] | |
async def crear_video_profesional(prompt, custom_script, voz_index, musica=None): | |
voz_archivo = None | |
try: | |
guion = custom_script if custom_script else generar_guion_profesional(prompt) | |
logger.info(f"Guion generado ({len(guion.split())} palabras)") | |
voz_seleccionada = VOICES[voz_index]['ShortName'] if VOICES else 'es-ES-ElviraNeural' | |
voz_archivo = "voz.mp3" | |
await edge_tts.Communicate(guion, voz_seleccionada).save(voz_archivo) | |
audio = AudioFileClip(voz_archivo) | |
duracion_total = audio.duration | |
videos_data = buscar_videos_avanzado(prompt, guion) | |
if not videos_data: | |
raise Exception("No se encontraron videos") | |
clips = [] | |
for video in videos_data[:3]: | |
video_file = next((vf for vf in video['video_files'] if vf['quality'] == 'sd'), video['video_files'][0]) | |
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video: | |
response = requests.get(video_file['link'], stream=True) | |
for chunk in response.iter_content(chunk_size=1024*1024): | |
temp_video.write(chunk) | |
clip = VideoFileClip(temp_video.name).subclip(0, min(10, video['duration'])) | |
clips.append(clip) | |
video_final = concatenate_videoclips(clips) | |
video_final = video_final.set_audio(audio) | |
output_path = f"video_output_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4" | |
video_final.write_videofile(output_path, fps=24, threads=2) | |
return output_path | |
except Exception as e: | |
logger.error(f"Error crítico: {str(e)}") | |
return None | |
finally: | |
if voz_archivo and os.path.exists(voz_archivo): | |
os.remove(voz_archivo) | |
def run_async_wrapper(prompt, custom_script, voz, musica): | |
voz_index = VOICE_NAMES.index(voz) | |
return asyncio.run(crear_video_profesional(prompt, custom_script, voz_index, musica)) | |
with gr.Blocks(title="Generador de Videos") as app: | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Tema del video") | |
custom_script = gr.TextArea(label="Guion personalizado (opcional)") | |
voz = gr.Dropdown(VOICE_NAMES, label="Voz", value=VOICE_NAMES[0]) | |
musica = gr.File(label="Música de fondo (opcional)", file_types=["audio"]) | |
btn = gr.Button("Generar Video", variant="primary") | |
with gr.Column(): | |
output = gr.Video(label="Resultado", format="mp4") | |
btn.click( | |
fn=run_async_wrapper, | |
inputs=[prompt, custom_script, voz, musica], | |
outputs=output | |
) | |
if __name__ == "__main__": | |
app.launch(server_name="0.0.0.0", server_port=7860) | |