INVIDEO_BASIC / app.py
gnosticdev's picture
Update app.py
dd712f9 verified
raw
history blame
8.61 kB
import os
import random
import requests
import gradio as gr
from moviepy.editor import VideoFileClip, concatenate_videoclips, AudioFileClip, CompositeVideoClip
from moviepy.audio.fx.all import audio_loop
import edge_tts
import asyncio
from datetime import datetime
from pathlib import Path
from transformers import pipeline
import logging
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Pexels API key from environment variable
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
logger.info("Loaded PEXELS_API_KEY from environment")
# Ensure asyncio works with Gradio
def run_async(coro):
logger.info("Running async coroutine")
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(coro)
loop.close()
logger.info("Async coroutine completed")
return result
# Load lightweight text generation model for Spanish
logger.info("Loading text generation model: facebook/mbart-large-50")
try:
generator = pipeline("text-generation", model="facebook/mbart-large-50", device="cpu")
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Error loading model: {e}")
generator = None
# List available Spanish voices for Edge TTS
SPANISH_VOICES = [
"es-MX-DaliaNeural",
"es-MX-JorgeNeural",
"es-MX-CecilioNeural",
"es-MX-BeatrizNeural",
"es-MX-CandelaNeural",
"es-MX-CarlosNeural",
"es-MX-LarissaNeural",
"es-MX-ManuelNeural",
"es-MX-MarinaNeural",
"es-MX-NuriaNeural"
]
# Fetch videos from Pexels
def fetch_pexels_videos(query, num_videos=5):
logger.info(f"Fetching {num_videos} videos from Pexels with query: {query}")
headers = {"Authorization": PEXELS_API_KEY}
url = f"https://api.pexels.com/videos/search?query={query}&per_page={num_videos}"
response = requests.get(url, headers=headers)
if response.status_code == 200:
videos = [video["video_files"][0]["link"] for video in response.json()["videos"]]
logger.info(f"Fetched {len(videos)} videos from Pexels")
return videos
logger.error("Failed to fetch videos from Pexels")
return []
# Generate script using local model or custom text
def generate_script(prompt, custom_text=None):
logger.info("Generating script")
if custom_text:
logger.info("Using custom text provided by user")
return custom_text.strip()
if not prompt:
logger.error("No prompt or custom text provided")
return "Error: Debes proporcionar un prompt o un guion personalizado."
# Generate script with local model
if generator:
input_text = f"Genera un guion para un video sobre '{prompt}'. Crea una lista numerada con descripciones breves (máximo 20 palabras por ítem) para un top 10 relacionado con el tema en español."
logger.info(f"Generating script with prompt: {prompt}")
try:
result = generator(input_text, max_length=300, num_return_sequences=1, do_sample=True, truncation=True)[0]['generated_text']
logger.info("Script generated successfully")
return result.strip()
except Exception as e:
logger.error(f"Error generating script: {e}")
# Fallback mock response
logger.info("Using fallback mock response")
if "recetas" in prompt.lower():
return """
1. Tacos al pastor: Jugosa carne marinada con piña.
2. Lasagna: Capas de pasta, carne y queso fundido.
3. Sushi: Arroz y pescado fresco en rollos delicados.
4. Pizza casera: Masa crujiente con tus ingredientes favoritos.
5. Paella: Arroz con mariscos y azafrán.
6. Ceviche: Pescado fresco marinado en limón.
7. Ramen: Caldo rico con fideos y cerdo.
8. Tiramisú: Postre cremoso con café y mascarpone.
9. Enchiladas: Tortillas rellenas con salsa picante.
10. Curry: Especias intensas con carne o vegetales.
"""
return f"Top 10 sobre {prompt}: No se pudo generar un guion específico."
# Generate voice using Edge TTS
async def generate_voice(text, output_file="output.mp3"):
logger.info(f"Generating voice with Edge TTS using voice: es-MX-DaliaNeural")
try:
communicate = edge_tts.Communicate(text, voice="es-MX-DaliaNeural")
await communicate.save(output_file)
logger.info(f"Voice generated and saved to {output_file}")
return output_file
except Exception as e:
logger.error(f"Error generating voice: {e}")
return None
# Download and trim video
def download_and_trim_video(url, duration, output_path):
logger.info(f"Downloading video from {url}")
response = requests.get(url, stream=True)
with open("temp_video.mp4", "wb") as f:
for chunk in response.iter_content(chunk_size=1024):
f.write(chunk)
logger.info("Trimming video")
clip = VideoFileClip("temp_video.mp4").subclip(0, min(duration, VideoFileClip("temp_video.mp4").duration))
clip.write_videofile(output_path, codec="libx264", audio_codec="aac")
clip.close()
os.remove("temp_video.mp4")
logger.info(f"Video trimmed and saved to {output_path}")
return output_path
# Main video creation function
def create_video(prompt, custom_text, music_file):
logger.info("Starting video creation process")
output_dir = "output_videos"
os.makedirs(output_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_video = f"{output_dir}/video_{timestamp}.mp4"
logger.info(f"Output video will be saved to {output_video}")
# Generate or use provided script
script = generate_script(prompt, custom_text)
if "Error" in script:
logger.error(script)
return script
# Generate voice
voice_file = "temp_audio.mp3"
run_async(generate_voice(script, voice_file))
if not os.path.exists(voice_file):
logger.error("Voice generation failed")
return "Error: No se pudo generar la voz."
audio = AudioFileClip(voice_file)
video_duration = audio.duration
logger.info(f"Audio duration: {video_duration} seconds")
# Fetch Pexels videos
query = prompt.split()[0] if prompt else "generic"
video_urls = fetch_pexels_videos(query, num_videos=5)
if not video_urls:
logger.error("No videos found on Pexels")
return "Error: No se encontraron videos en Pexels."
# Download and trim videos
clips = []
for i, url in enumerate(video_urls):
clip_path = f"temp_clip_{i}.mp4"
download_and_trim_video(url, video_duration / len(video_urls), clip_path)
clips.append(VideoFileClip(clip_path))
logger.info(f"Processed video clip {i+1}/{len(video_urls)}")
# Concatenate video clips
logger.info("Concatenating video clips")
final_clip = concatenate_videoclips(clips, method="compose").set_duration(video_duration)
# Add looped music
if music_file:
logger.info("Adding user-uploaded music")
music = AudioFileClip(music_file.name)
music = audio_loop(music, duration=video_duration)
final_clip = final_clip.set_audio(music.set_duration(video_duration))
else:
logger.info("Using generated voice as audio")
final_clip = final_clip.set_audio(audio)
# Write final video
logger.info(f"Writing final video to {output_video}")
final_clip.write_videofile(output_video, codec="libx264", audio_codec="aac", fps=24)
# Clean up
logger.info("Cleaning up temporary files")
for clip in clips:
clip.close()
audio.close()
if music_file:
music.close()
final_clip.close()
os.remove(voice_file)
for i in range(len(video_urls)):
os.remove(f"temp_clip_{i}.mp4")
logger.info("Video creation completed")
return output_video
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Generador de Videos")
gr.Markdown("Ingresa un prompt (ej., 'Top 10 recetas más ricas') o un guion personalizado. Sube música opcional (MP3).")
prompt = gr.Textbox(label="Prompt", placeholder="Ejemplo: Top 10 recetas más ricas")
custom_text = gr.Textbox(label="Guion Personalizado", placeholder="Ingresa tu propio guion aquí (opcional)")
music_file = gr.File(label="Subir Música (MP3, opcional)", file_types=[".mp3"])
submit = gr.Button("Generar Video")
output = gr.Video(label="Video Generado")
submit.click(fn=create_video, inputs=[prompt, custom_text, music_file], outputs=output)
demo.launch(share=True)