gnosticdev commited on
Commit
374c72e
verified
1 Parent(s): 40c7de1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +149 -35
app.py CHANGED
@@ -1,50 +1,164 @@
1
  import os
2
- import asyncio
3
- from concurrent.futures import ThreadPoolExecutor
4
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- # Configuraci贸n CR脥TICA para evitar timeouts
7
- GRADIO_TIMEOUT = 6000 # 10 minutos (en segundos)
8
- MAX_VIDEO_DURATION = 1000 # 2 minutos (evita procesos eternos)
9
 
10
- async def crear_video_profesional(prompt, custom_script, voz_index, musica=None):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  try:
12
- # 1. Simulamos un proceso largo (隆esto es lo que causa el timeout!)
13
- # Reemplaza esto con tu l贸gica real de generaci贸n
14
- await asyncio.sleep(30) # Solo para prueba
15
-
16
- # 2. Devuelve un video de prueba (eliminar en producci贸n)
17
- return "video_prueba.mp4"
18
-
19
  except Exception as e:
20
- print(f"ERROR: {str(e)}")
21
- return None
 
22
 
23
- # 馃憞 **Soluci贸n M谩gica**: Ejecuci贸n en hilos separados
24
- def run_async_with_timeout(prompt, script, voz_index, musica=None):
25
- with ThreadPoolExecutor() as executor:
26
- future = executor.submit(
27
- lambda: asyncio.run(crear_video_profesional(prompt, script, voz_index, musica))
 
 
 
28
  )
29
- return future.result(timeout=GRADIO_TIMEOUT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
- # Interfaz Minimalista (para enfocarnos en el timeout)
32
- with gr.Blocks() as app:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  with gr.Row():
34
- prompt = gr.Textbox(label="Tema")
35
- btn = gr.Button("Generar")
36
- output = gr.Video()
37
-
 
 
 
 
 
 
 
38
  btn.click(
39
- fn=run_async_with_timeout, # 馃憟 Usamos el wrapper anti-timeout
40
- inputs=[prompt, gr.Textbox(visible=False), gr.Number(visible=False)],
41
  outputs=output
42
  )
43
 
44
  if __name__ == "__main__":
45
- app.launch(
46
- server_name="0.0.0.0",
47
- server_port=7860,
48
- # 鈿狅笍 Configuraci贸n CLAVE para el timeout
49
- app_kwargs={"timeout": GRADIO_TIMEOUT}
50
- )
 
1
  import os
2
+ import re
3
+ import requests
4
  import gradio as gr
5
+ from moviepy.editor import *
6
+ import edge_tts
7
+ import tempfile
8
+ import logging
9
+ from datetime import datetime
10
+ import numpy as np
11
+ from sklearn.feature_extraction.text import TfidfVectorizer
12
+ import nltk
13
+ import random
14
+ from transformers import pipeline
15
+ import torch
16
+ import asyncio
17
+ import nest_asyncio
18
+ from nltk.tokenize import sent_tokenize
19
 
20
+ # Setup
21
+ nltk.download('punkt', quiet=True)
22
+ nest_asyncio.apply()
23
 
24
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
25
+ logger = logging.getLogger(__name__)
26
+
27
+ PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
28
+ MODEL_NAME = "DeepESP/gpt2-spanish"
29
+
30
+ VOICE_NAMES, VOICES = [], []
31
+
32
+ async def get_voices():
33
+ voces = await edge_tts.list_voices()
34
+ voice_names = [f"{v['Name']} ({v['Gender']}, {v['LocaleName']})" for v in voces]
35
+ return voice_names, voces
36
+
37
+ async def get_and_set_voices():
38
+ global VOICE_NAMES, VOICES
39
  try:
40
+ VOICE_NAMES, VOICES = await get_voices()
41
+ if not VOICES:
42
+ raise Exception("No se encontraron voces.")
 
 
 
 
43
  except Exception as e:
44
+ logger.warning(f"Fallo al cargar voces: {e}")
45
+ VOICE_NAMES = ["Voz Predeterminada (Femenino, es-ES)"]
46
+ VOICES = [{'ShortName': 'es-ES-ElviraNeural'}]
47
 
48
+ asyncio.get_event_loop().run_until_complete(get_and_set_voices())
49
+
50
+ def generar_guion_profesional(prompt):
51
+ try:
52
+ generator = pipeline(
53
+ "text-generation",
54
+ model=MODEL_NAME,
55
+ device=0 if torch.cuda.is_available() else -1
56
  )
57
+ response = generator(
58
+ f"Escribe un guion profesional para un video de YouTube sobre '{prompt}'. "
59
+ "Incluye introducci贸n, desarrollo en 3 secciones y conclusi贸n:",
60
+ max_length=1000,
61
+ temperature=0.7,
62
+ top_k=50,
63
+ top_p=0.95,
64
+ num_return_sequences=1
65
+ )
66
+ guion = response[0]['generated_text']
67
+ if len(guion.split()) < 100:
68
+ raise ValueError("Guion demasiado breve")
69
+ return guion
70
+ except Exception as e:
71
+ logger.error(f"Error generando guion: {e}")
72
+ return f"""Introducci贸n sobre {prompt}.
73
+ Secci贸n 1: Or铆genes e historia.
74
+ Secci贸n 2: Estado actual.
75
+ Secci贸n 3: Futuro e impacto.
76
+ Conclusi贸n reflexiva."""
77
 
78
+ def buscar_videos_avanzado(prompt, guion, num_videos=5):
79
+ try:
80
+ oraciones = sent_tokenize(guion)
81
+ vectorizer = TfidfVectorizer(stop_words='spanish')
82
+ tfidf = vectorizer.fit_transform(oraciones)
83
+ palabras = vectorizer.get_feature_names_out()
84
+ scores = np.asarray(tfidf.sum(axis=0)).ravel()
85
+ top_indices = np.argsort(scores)[-5:]
86
+ palabras_clave = [palabras[i] for i in top_indices]
87
+
88
+ palabras_prompt = re.findall(r'\b\w{4,}\b', prompt.lower())
89
+ todas = list(set(palabras_clave + palabras_prompt))[:5]
90
+
91
+ headers = {"Authorization": PEXELS_API_KEY}
92
+ response = requests.get(
93
+ f"https://api.pexels.com/videos/search?query={'+'.join(todas)}&per_page={num_videos}",
94
+ headers=headers,
95
+ timeout=15
96
+ )
97
+ return response.json().get('videos', [])
98
+ except Exception as e:
99
+ logger.error(f"Error buscando videos: {e}")
100
+ return []
101
+
102
+ async def crear_video_profesional(prompt, custom_script, voz_index, musica=None):
103
+ voz_archivo = "voz.mp3"
104
+ try:
105
+ guion = custom_script if custom_script.strip() else generar_guion_profesional(prompt)
106
+ voz_seleccionada = VOICES[voz_index]['ShortName'] if VOICES else 'es-ES-ElviraNeural'
107
+
108
+ # Generar audio
109
+ await edge_tts.Communicate(guion, voz_seleccionada).save(voz_archivo)
110
+ audio = AudioFileClip(voz_archivo)
111
+
112
+ # Obtener videos
113
+ videos_data = buscar_videos_avanzado(prompt, guion)
114
+ if not videos_data:
115
+ raise Exception("No se encontraron videos")
116
+
117
+ # Procesar videos
118
+ clips = []
119
+ for video in videos_data[:3]:
120
+ video_file = next((vf for vf in video['video_files'] if vf['quality'] == 'sd'), video['video_files'][0])
121
+ with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_video:
122
+ response = requests.get(video_file['link'], stream=True)
123
+ for chunk in response.iter_content(chunk_size=1024 * 1024):
124
+ temp_video.write(chunk)
125
+ clip = VideoFileClip(temp_video.name).subclip(0, min(10, video['duration']))
126
+ clips.append(clip)
127
+
128
+ # Crear video final
129
+ video_final = concatenate_videoclips(clips)
130
+ video_final = video_final.set_audio(audio)
131
+
132
+ output_path = f"video_output_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4"
133
+ video_final.write_videofile(output_path, fps=24, threads=2)
134
+ return output_path
135
+
136
+ except Exception as e:
137
+ logger.error(f"Error cr铆tico: {e}")
138
+ return None
139
+ finally:
140
+ if os.path.exists(voz_archivo):
141
+ os.remove(voz_archivo)
142
+
143
+ # Gradio app
144
+ with gr.Blocks(title="Generador de Videos") as app:
145
  with gr.Row():
146
+ with gr.Column():
147
+ prompt = gr.Textbox(label="Tema del video")
148
+ custom_script = gr.TextArea(label="Gui贸n personalizado (opcional)")
149
+ voz = gr.Dropdown(VOICE_NAMES, label="Voz", value=VOICE_NAMES[0])
150
+ btn = gr.Button("Generar Video", variant="primary")
151
+ with gr.Column():
152
+ output = gr.Video(label="Resultado", format="mp4")
153
+
154
+ async def wrapper(p, cs, v):
155
+ return await crear_video_profesional(p, cs, VOICE_NAMES.index(v))
156
+
157
  btn.click(
158
+ fn=wrapper,
159
+ inputs=[prompt, custom_script, voz],
160
  outputs=output
161
  )
162
 
163
  if __name__ == "__main__":
164
+ app.launch(server_name="0.0.0.0", server_port=7860)