Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,120 +1,136 @@
|
|
1 |
import os
|
2 |
import re
|
3 |
import requests
|
4 |
-
import numpy as np
|
5 |
import gradio as gr
|
6 |
-
from datetime import datetime
|
7 |
from moviepy.editor import *
|
8 |
-
from transformers import pipeline, AutoTokenizer, AutoModel
|
9 |
-
import torch
|
10 |
-
import torch.nn.functional as F
|
11 |
import edge_tts
|
12 |
import tempfile
|
13 |
import logging
|
14 |
-
from
|
|
|
15 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
16 |
-
from nltk.tokenize import sent_tokenize
|
17 |
import nltk
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
#
|
20 |
nltk.download('punkt')
|
21 |
-
|
22 |
-
# Configuraci贸n avanzada
|
23 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
24 |
logger = logging.getLogger(__name__)
|
25 |
|
26 |
# Configuraci贸n de modelos
|
27 |
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
|
28 |
-
|
29 |
-
|
30 |
-
# 1. Modelo para generaci贸n de guiones (MBART grande para espa帽ol)
|
31 |
-
script_generator = pipeline(
|
32 |
-
"text2text-generation",
|
33 |
-
model="facebook/mbart-large-50",
|
34 |
-
tokenizer="facebook/mbart-large-50",
|
35 |
-
device=0 if torch.cuda.is_available() else -1
|
36 |
-
)
|
37 |
-
|
38 |
-
# 2. Modelo para embeddings sem谩nticos (multiling眉e)
|
39 |
-
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
40 |
-
embedding_model = AutoModel.from_pretrained("sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
41 |
|
42 |
-
#
|
43 |
-
VOICES =
|
44 |
VOICE_NAMES = [f"{v['Name']} ({v['Gender']}, {v['LocaleName']})" for v in VOICES]
|
45 |
|
46 |
-
def
|
47 |
-
"""Genera
|
48 |
try:
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
max_length=1000,
|
52 |
-
num_beams=5,
|
53 |
temperature=0.7,
|
54 |
top_k=50,
|
55 |
top_p=0.95,
|
56 |
-
|
57 |
)
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
except Exception as e:
|
60 |
-
logger.error(f"Error
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
return f"""
|
63 |
-
隆Hola a todos!
|
64 |
-
En este video
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
"""
|
70 |
|
71 |
-
def
|
72 |
-
"""
|
73 |
-
inputs = tokenizer(textos, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
74 |
-
with torch.no_grad():
|
75 |
-
outputs = embedding_model(**inputs)
|
76 |
-
embeddings = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
77 |
-
return embeddings
|
78 |
-
|
79 |
-
def buscar_videos_semanticos(query, guion, num_videos=5):
|
80 |
-
"""Busca videos usando an谩lisis sem谩ntico"""
|
81 |
try:
|
82 |
# Dividir el guion en oraciones
|
83 |
oraciones = sent_tokenize(guion)
|
84 |
|
85 |
-
#
|
86 |
-
|
87 |
-
|
88 |
-
# Embedding para la consulta general
|
89 |
-
embedding_query = obtener_embeddings([query])[0]
|
90 |
-
|
91 |
-
# Calcular similitud entre consulta y cada oraci贸n
|
92 |
-
similitudes = cosine_similarity([embedding_query], embeddings_oraciones)[0]
|
93 |
-
|
94 |
-
# Seleccionar las oraciones m谩s relevantes
|
95 |
-
indices_relevantes = np.argsort(similitudes)[-3:]
|
96 |
-
oraciones_relevantes = [oraciones[i] for i in indices_relevantes]
|
97 |
-
|
98 |
-
# Extraer palabras clave de las oraciones relevantes
|
99 |
-
vectorizer = TfidfVectorizer(stop_words=['el', 'la', 'los', 'las', 'de', 'en', 'y'])
|
100 |
-
tfidf = vectorizer.fit_transform(oraciones_relevantes)
|
101 |
palabras = vectorizer.get_feature_names_out()
|
102 |
scores = np.asarray(tfidf.sum(axis=0)).ravel()
|
103 |
indices_importantes = np.argsort(scores)[-5:]
|
104 |
palabras_clave = [palabras[i] for i in indices_importantes]
|
105 |
|
106 |
-
#
|
|
|
|
|
|
|
|
|
107 |
headers = {"Authorization": PEXELS_API_KEY}
|
108 |
response = requests.get(
|
109 |
-
f"https://api.pexels.com/videos/search?query={'+'.join(
|
110 |
headers=headers,
|
111 |
-
timeout=
|
112 |
)
|
113 |
|
114 |
videos = response.json().get('videos', [])
|
115 |
-
logger.info(f"
|
116 |
|
117 |
-
# Seleccionar
|
118 |
videos_ordenados = sorted(
|
119 |
videos,
|
120 |
key=lambda x: x.get('width', 0) * x.get('height', 0),
|
@@ -124,31 +140,32 @@ def buscar_videos_semanticos(query, guion, num_videos=5):
|
|
124 |
return videos_ordenados[:num_videos]
|
125 |
|
126 |
except Exception as e:
|
127 |
-
logger.error(f"Error en b煤squeda
|
128 |
-
#
|
129 |
response = requests.get(
|
130 |
-
f"https://api.pexels.com/videos/search?query={
|
131 |
headers={"Authorization": PEXELS_API_KEY},
|
132 |
timeout=10
|
133 |
)
|
134 |
return response.json().get('videos', [])[:num_videos]
|
135 |
|
136 |
-
def
|
137 |
try:
|
138 |
# 1. Generar o usar guion
|
139 |
-
guion = custom_script if custom_script else
|
140 |
-
logger.info(f"Guion generado
|
141 |
|
142 |
# 2. Seleccionar voz
|
143 |
voz_seleccionada = VOICES[voz_index]['ShortName']
|
144 |
|
145 |
-
# 3. Generar
|
146 |
voz_archivo = "voz.mp3"
|
147 |
-
|
148 |
-
|
|
|
149 |
|
150 |
-
# 4. Buscar videos
|
151 |
-
videos_data =
|
152 |
|
153 |
if not videos_data:
|
154 |
raise Exception("No se encontraron videos relevantes")
|
@@ -175,43 +192,42 @@ def crear_video_inteligente(prompt, custom_script, voz_index, musica=None):
|
|
175 |
clip = VideoFileClip(temp_video.name)
|
176 |
clips.append(clip)
|
177 |
|
178 |
-
# 6.
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
|
|
182 |
if musica:
|
183 |
musica_clip = AudioFileClip(musica.name)
|
184 |
-
if musica_clip.duration <
|
185 |
-
musica_clip = musica_clip.loop(duration=
|
|
|
|
|
186 |
audio = CompositeAudioClip([audio, musica_clip.volumex(0.25)])
|
187 |
|
188 |
-
|
189 |
-
# Calcular duraci贸n por clip
|
190 |
-
clip_durations = [c.duration for c in clips]
|
191 |
-
total_clip_duration = sum(clip_durations)
|
192 |
-
|
193 |
-
# Ajustar clips para que coincidan con la duraci贸n del audio
|
194 |
-
if total_clip_duration < total_duration:
|
195 |
-
# Repetir la secuencia de videos si es necesario
|
196 |
-
repetitions = int(total_duration / total_clip_duration) + 1
|
197 |
-
extended_clips = clips * repetitions
|
198 |
-
final_clip = concatenate_videoclips(extended_clips).subclip(0, total_duration)
|
199 |
-
else:
|
200 |
-
# Ajustar velocidad para coincidir con la duraci贸n
|
201 |
-
speed_factor = total_clip_duration / total_duration
|
202 |
-
adjusted_clips = [clip.fx(vfx.speedx, speed_factor) for clip in clips]
|
203 |
-
final_clip = concatenate_videoclips(adjusted_clips)
|
204 |
-
|
205 |
-
final_clip = final_clip.set_audio(audio)
|
206 |
|
207 |
-
#
|
208 |
output_path = f"video_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4"
|
209 |
-
|
210 |
output_path,
|
211 |
codec="libx264",
|
212 |
audio_codec="aac",
|
213 |
-
threads=
|
214 |
-
preset='
|
215 |
fps=24
|
216 |
)
|
217 |
|
@@ -221,79 +237,57 @@ def crear_video_inteligente(prompt, custom_script, voz_index, musica=None):
|
|
221 |
logger.error(f"ERROR: {str(e)}")
|
222 |
return None
|
223 |
finally:
|
224 |
-
# Limpieza
|
225 |
if os.path.exists(voz_archivo):
|
226 |
os.remove(voz_archivo)
|
227 |
|
228 |
# Interfaz profesional
|
229 |
-
with gr.Blocks(theme=gr.themes.Soft(), title="Generador de Videos
|
230 |
-
gr.Markdown("# 馃幀 GENERADOR
|
231 |
|
232 |
with gr.Row():
|
233 |
with gr.Column(scale=1):
|
234 |
gr.Markdown("### Configuraci贸n del Contenido")
|
235 |
-
prompt = gr.Textbox(label="Tema principal", placeholder="Ej: 'Los misterios
|
236 |
custom_script = gr.TextArea(
|
237 |
label="Guion personalizado (opcional)",
|
238 |
-
placeholder="
|
239 |
lines=8
|
240 |
)
|
241 |
voz = gr.Dropdown(
|
242 |
-
label="Selecciona una voz
|
243 |
choices=VOICE_NAMES,
|
244 |
value=VOICE_NAMES[0],
|
245 |
type="index"
|
246 |
)
|
247 |
musica = gr.File(
|
248 |
-
label="M煤sica de fondo
|
249 |
-
file_types=["audio"]
|
250 |
-
type="filepath"
|
251 |
)
|
252 |
-
btn = gr.Button("馃殌 Generar Video
|
253 |
|
254 |
with gr.Column(scale=2):
|
255 |
output = gr.Video(
|
256 |
label="Video Resultante",
|
257 |
format="mp4",
|
258 |
-
interactive=False
|
259 |
-
elem_id="video-output"
|
260 |
)
|
261 |
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
""
|
270 |
-
|
271 |
-
# Ejemplos profesionales
|
272 |
-
gr.Examples(
|
273 |
-
examples=[
|
274 |
-
["Los secretos de la inteligencia artificial", "", 0, None],
|
275 |
-
["Lugares hist贸ricos de Europa", "", 3, None],
|
276 |
-
["Innovaciones tecnol贸gicas del futuro", "", 5, None]
|
277 |
-
],
|
278 |
-
inputs=[prompt, custom_script, voz, musica],
|
279 |
-
label="Ejemplos profesionales"
|
280 |
-
)
|
281 |
|
282 |
btn.click(
|
283 |
-
fn=
|
284 |
inputs=[prompt, custom_script, voz, musica],
|
285 |
outputs=output
|
286 |
)
|
287 |
|
288 |
-
# CSS para mejor visualizaci贸n
|
289 |
-
app.css = """
|
290 |
-
#video-output {
|
291 |
-
border-radius: 12px;
|
292 |
-
box-shadow: 0 6px 16px rgba(0,0,0,0.15);
|
293 |
-
margin: 20px auto;
|
294 |
-
max-width: 100%;
|
295 |
-
}
|
296 |
-
"""
|
297 |
-
|
298 |
if __name__ == "__main__":
|
299 |
app.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
import os
|
2 |
import re
|
3 |
import requests
|
|
|
4 |
import gradio as gr
|
|
|
5 |
from moviepy.editor import *
|
|
|
|
|
|
|
6 |
import edge_tts
|
7 |
import tempfile
|
8 |
import logging
|
9 |
+
from datetime import datetime
|
10 |
+
import numpy as np
|
11 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
12 |
import nltk
|
13 |
+
from nltk.tokenize import sent_tokenize
|
14 |
+
import random
|
15 |
+
from transformers import pipeline
|
16 |
+
import torch
|
17 |
|
18 |
+
# Configuraci贸n inicial
|
19 |
nltk.download('punkt')
|
|
|
|
|
20 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
23 |
# Configuraci贸n de modelos
|
24 |
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
|
25 |
+
MODEL_NAME = "DeepESP/gpt2-spanish" # Modelo en espa帽ol m谩s ligero
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Lista de voces disponibles
|
28 |
+
VOICES = asyncio.run(edge_tts.list_voices())
|
29 |
VOICE_NAMES = [f"{v['Name']} ({v['Gender']}, {v['LocaleName']})" for v in VOICES]
|
30 |
|
31 |
+
def generar_guion_profesional(prompt):
|
32 |
+
"""Genera guiones detallados con sistema de 3 niveles"""
|
33 |
try:
|
34 |
+
# 1. Intento con modelo principal
|
35 |
+
generator = pipeline(
|
36 |
+
"text-generation",
|
37 |
+
model=MODEL_NAME,
|
38 |
+
device=0 if torch.cuda.is_available() else -1
|
39 |
+
)
|
40 |
+
|
41 |
+
response = generator(
|
42 |
+
f"Escribe un guion profesional para un video de YouTube sobre '{prompt}'. "
|
43 |
+
"La estructura debe incluir:\n"
|
44 |
+
"1. Introducci贸n atractiva\n"
|
45 |
+
"2. Tres secciones detalladas con subt铆tulos\n"
|
46 |
+
"3. Conclusi贸n impactante\n"
|
47 |
+
"Usa un estilo natural para narraci贸n:",
|
48 |
max_length=1000,
|
|
|
49 |
temperature=0.7,
|
50 |
top_k=50,
|
51 |
top_p=0.95,
|
52 |
+
num_return_sequences=1
|
53 |
)
|
54 |
+
|
55 |
+
guion = response[0]['generated_text']
|
56 |
+
|
57 |
+
# 2. Verificar calidad del guion
|
58 |
+
if len(guion.split()) < 100: # Si es muy corto
|
59 |
+
raise ValueError("Guion demasiado breve")
|
60 |
+
|
61 |
+
return guion
|
62 |
+
|
63 |
except Exception as e:
|
64 |
+
logger.error(f"Error generando guion: {str(e)}")
|
65 |
+
|
66 |
+
# 3. Respaldos inteligentes
|
67 |
+
temas = {
|
68 |
+
"historia": ["or铆genes", "eventos clave", "impacto actual"],
|
69 |
+
"tecnolog铆a": ["funcionamiento", "aplicaciones", "futuro"],
|
70 |
+
"ciencia": ["teor铆as", "evidencia", "implicaciones"],
|
71 |
+
"misterio": ["enigma", "teor铆as", "explicaciones"],
|
72 |
+
"arte": ["or铆genes", "caracter铆sticas", "influencia"]
|
73 |
+
}
|
74 |
+
|
75 |
+
# Detectar categor铆a del tema
|
76 |
+
categoria = "general"
|
77 |
+
for key in temas:
|
78 |
+
if key in prompt.lower():
|
79 |
+
categoria = key
|
80 |
+
break
|
81 |
+
|
82 |
+
puntos_clave = temas.get(categoria, ["aspectos importantes", "datos relevantes", "conclusiones"])
|
83 |
+
|
84 |
+
# Generar guion de respaldo con estructura profesional
|
85 |
return f"""
|
86 |
+
隆Hola a todos! Bienvenidos a este an谩lisis completo sobre {prompt}.
|
87 |
+
En este video exploraremos a fondo este fascinante tema a trav茅s de tres secciones clave.
|
88 |
+
|
89 |
+
SECCI脫N 1: {puntos_clave[0].capitalize()}
|
90 |
+
Comenzaremos analizando los {puntos_clave[0]} fundamentales.
|
91 |
+
Esto nos permitir谩 entender mejor la base de {prompt}.
|
92 |
+
|
93 |
+
SECCI脫N 2: {puntos_clave[1].capitalize()}
|
94 |
+
En esta parte, examinaremos los {puntos_clave[1]} m谩s relevantes
|
95 |
+
y c贸mo se relacionan con el tema principal.
|
96 |
+
|
97 |
+
SECCI脫N 3: {puntos_clave[2].capitalize()}
|
98 |
+
Finalmente, exploraremos las {puntos_clave[2]}
|
99 |
+
y qu茅 significan para el futuro de este campo.
|
100 |
+
|
101 |
+
驴Listos para profundizar? 隆Empecemos!
|
102 |
"""
|
103 |
|
104 |
+
def buscar_videos_avanzado(prompt, guion, num_videos=5):
|
105 |
+
"""B煤squeda inteligente de videos usando an谩lisis de contenido"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
try:
|
107 |
# Dividir el guion en oraciones
|
108 |
oraciones = sent_tokenize(guion)
|
109 |
|
110 |
+
# Extraer palabras clave con TF-IDF
|
111 |
+
vectorizer = TfidfVectorizer(stop_words=['el', 'la', 'los', 'las', 'de', 'en', 'y', 'que'])
|
112 |
+
tfidf = vectorizer.fit_transform(oraciones)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
palabras = vectorizer.get_feature_names_out()
|
114 |
scores = np.asarray(tfidf.sum(axis=0)).ravel()
|
115 |
indices_importantes = np.argsort(scores)[-5:]
|
116 |
palabras_clave = [palabras[i] for i in indices_importantes]
|
117 |
|
118 |
+
# Mezclar palabras clave del prompt y del guion
|
119 |
+
palabras_prompt = re.findall(r'\b\w{4,}\b', prompt.lower())
|
120 |
+
todas_palabras = list(set(palabras_clave + palabras_prompt))[:5]
|
121 |
+
|
122 |
+
# Buscar en Pexels
|
123 |
headers = {"Authorization": PEXELS_API_KEY}
|
124 |
response = requests.get(
|
125 |
+
f"https://api.pexels.com/videos/search?query={'+'.join(todas_palabras)}&per_page={num_videos}",
|
126 |
headers=headers,
|
127 |
+
timeout=15
|
128 |
)
|
129 |
|
130 |
videos = response.json().get('videos', [])
|
131 |
+
logger.info(f"Palabras clave usadas: {todas_palabras}")
|
132 |
|
133 |
+
# Seleccionar videos de mejor calidad
|
134 |
videos_ordenados = sorted(
|
135 |
videos,
|
136 |
key=lambda x: x.get('width', 0) * x.get('height', 0),
|
|
|
140 |
return videos_ordenados[:num_videos]
|
141 |
|
142 |
except Exception as e:
|
143 |
+
logger.error(f"Error en b煤squeda de videos: {str(e)}")
|
144 |
+
# B煤squeda simple de respaldo
|
145 |
response = requests.get(
|
146 |
+
f"https://api.pexels.com/videos/search?query={prompt}&per_page={num_videos}",
|
147 |
headers={"Authorization": PEXELS_API_KEY},
|
148 |
timeout=10
|
149 |
)
|
150 |
return response.json().get('videos', [])[:num_videos]
|
151 |
|
152 |
+
def crear_video_profesional(prompt, custom_script, voz_index, musica=None):
|
153 |
try:
|
154 |
# 1. Generar o usar guion
|
155 |
+
guion = custom_script if custom_script else generar_guion_profesional(prompt)
|
156 |
+
logger.info(f"Guion generado ({len(guion.split())} palabras)")
|
157 |
|
158 |
# 2. Seleccionar voz
|
159 |
voz_seleccionada = VOICES[voz_index]['ShortName']
|
160 |
|
161 |
+
# 3. Generar voz
|
162 |
voz_archivo = "voz.mp3"
|
163 |
+
asyncio.run(edge_tts.Communicate(guion, voz_seleccionada).save(voz_archivo))
|
164 |
+
audio = AudioFileClip(voz_archivo)
|
165 |
+
duracion_total = audio.duration
|
166 |
|
167 |
+
# 4. Buscar videos relevantes
|
168 |
+
videos_data = buscar_videos_avanzado(prompt, guion)
|
169 |
|
170 |
if not videos_data:
|
171 |
raise Exception("No se encontraron videos relevantes")
|
|
|
192 |
clip = VideoFileClip(temp_video.name)
|
193 |
clips.append(clip)
|
194 |
|
195 |
+
# 6. Calcular duraci贸n por clip
|
196 |
+
duracion_por_clip = duracion_total / len(clips)
|
197 |
+
|
198 |
+
# 7. Procesar clips de video
|
199 |
+
clips_procesados = []
|
200 |
+
for clip in clips:
|
201 |
+
# Si el clip es m谩s corto que la duraci贸n asignada, hacer loop
|
202 |
+
if clip.duration < duracion_por_clip:
|
203 |
+
clip = clip.loop(duration=duracion_por_clip)
|
204 |
+
# Si es m谩s largo, recortar
|
205 |
+
else:
|
206 |
+
clip = clip.subclip(0, duracion_por_clip)
|
207 |
+
clips_procesados.append(clip)
|
208 |
+
|
209 |
+
# 8. Combinar videos
|
210 |
+
video_final = concatenate_videoclips(clips_procesados)
|
211 |
|
212 |
+
# 9. Procesar m煤sica
|
213 |
if musica:
|
214 |
musica_clip = AudioFileClip(musica.name)
|
215 |
+
if musica_clip.duration < duracion_total:
|
216 |
+
musica_clip = musica_clip.loop(duration=duracion_total)
|
217 |
+
else:
|
218 |
+
musica_clip = musica_clip.subclip(0, duracion_total)
|
219 |
audio = CompositeAudioClip([audio, musica_clip.volumex(0.25)])
|
220 |
|
221 |
+
video_final = video_final.set_audio(audio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
+
# 10. Exportar video
|
224 |
output_path = f"video_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4"
|
225 |
+
video_final.write_videofile(
|
226 |
output_path,
|
227 |
codec="libx264",
|
228 |
audio_codec="aac",
|
229 |
+
threads=2,
|
230 |
+
preset='fast',
|
231 |
fps=24
|
232 |
)
|
233 |
|
|
|
237 |
logger.error(f"ERROR: {str(e)}")
|
238 |
return None
|
239 |
finally:
|
240 |
+
# Limpieza de archivos temporales
|
241 |
if os.path.exists(voz_archivo):
|
242 |
os.remove(voz_archivo)
|
243 |
|
244 |
# Interfaz profesional
|
245 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Generador de Videos Profesional") as app:
|
246 |
+
gr.Markdown("# 馃幀 GENERADOR DE VIDEOS CON IA")
|
247 |
|
248 |
with gr.Row():
|
249 |
with gr.Column(scale=1):
|
250 |
gr.Markdown("### Configuraci贸n del Contenido")
|
251 |
+
prompt = gr.Textbox(label="Tema principal", placeholder="Ej: 'Los misterios de la antigua Grecia'")
|
252 |
custom_script = gr.TextArea(
|
253 |
label="Guion personalizado (opcional)",
|
254 |
+
placeholder="Pega aqu铆 tu propio guion completo...",
|
255 |
lines=8
|
256 |
)
|
257 |
voz = gr.Dropdown(
|
258 |
+
label="Selecciona una voz",
|
259 |
choices=VOICE_NAMES,
|
260 |
value=VOICE_NAMES[0],
|
261 |
type="index"
|
262 |
)
|
263 |
musica = gr.File(
|
264 |
+
label="M煤sica de fondo (opcional)",
|
265 |
+
file_types=["audio"]
|
|
|
266 |
)
|
267 |
+
btn = gr.Button("馃殌 Generar Video", variant="primary", size="lg")
|
268 |
|
269 |
with gr.Column(scale=2):
|
270 |
output = gr.Video(
|
271 |
label="Video Resultante",
|
272 |
format="mp4",
|
273 |
+
interactive=False
|
|
|
274 |
)
|
275 |
|
276 |
+
gr.Examples(
|
277 |
+
examples=[
|
278 |
+
["Los secretos de las pir谩mides egipcias", "", 5, None],
|
279 |
+
["La inteligencia artificial en medicina", "", 3, None],
|
280 |
+
["Lugares abandonados m谩s misteriosos", "", 8, None]
|
281 |
+
],
|
282 |
+
inputs=[prompt, custom_script, voz, musica],
|
283 |
+
label="Ejemplos: Haz clic en uno y luego en Generar"
|
284 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
btn.click(
|
287 |
+
fn=crear_video_profesional,
|
288 |
inputs=[prompt, custom_script, voz, musica],
|
289 |
outputs=output
|
290 |
)
|
291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
if __name__ == "__main__":
|
293 |
app.launch(server_name="0.0.0.0", server_port=7860)
|