Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,245 +1,228 @@
|
|
1 |
import os
|
2 |
import re
|
3 |
import random
|
4 |
-
import
|
5 |
-
import
|
6 |
-
from
|
7 |
-
from moviepy.audio.fx.all import audio_loop
|
8 |
-
import edge_tts
|
9 |
-
import asyncio
|
10 |
from datetime import datetime
|
11 |
from pathlib import Path
|
12 |
-
from transformers import pipeline
|
13 |
-
from sentence_transformers import SentenceTransformer
|
14 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
15 |
-
import numpy as np
|
16 |
-
import logging
|
17 |
-
from typing import List, Optional, Tuple
|
18 |
|
19 |
-
#
|
|
|
|
|
|
|
|
|
|
|
20 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
23 |
-
# Configuración de modelos de IA
|
24 |
-
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY")
|
25 |
-
if not PEXELS_API_KEY:
|
26 |
-
logger.error("PEXELS_API_KEY no encontrada en variables de entorno")
|
27 |
-
|
28 |
-
# Cargamos modelos de IA para análisis semántico
|
29 |
-
logger.info("Cargando modelos de IA...")
|
30 |
try:
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
39 |
raise
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
try:
|
53 |
-
response = requests.get(url,
|
54 |
response.raise_for_status()
|
55 |
|
56 |
-
|
57 |
-
for video in response.json().get("videos", []):
|
58 |
-
# Filtramos por calidad mínima
|
59 |
-
video_files = [vf for vf in video.get("video_files", [])
|
60 |
-
if vf.get("width", 0) >= 1280 and vf.get("duration", 0) >= 5]
|
61 |
-
|
62 |
-
if video_files:
|
63 |
-
best_file = max(video_files, key=lambda x: x.get("width", 0))
|
64 |
-
video_title = video.get("alt", "") or video.get("url", "")
|
65 |
-
|
66 |
-
# Calculamos similitud semántica
|
67 |
-
title_embedding = semantic_model.encode(video_title, convert_to_tensor=True)
|
68 |
-
similarity = cosine_similarity(
|
69 |
-
script_embedding.cpu().numpy().reshape(1, -1),
|
70 |
-
title_embedding.cpu().numpy().reshape(1, -1)
|
71 |
-
)[0][0]
|
72 |
-
|
73 |
-
videos_data.append((best_file["link"], similarity, video_title))
|
74 |
-
|
75 |
-
# Ordenamos por relevancia semántica
|
76 |
-
videos_data.sort(key=lambda x: x[1], reverse=True)
|
77 |
-
|
78 |
-
# Filtramos los más relevantes
|
79 |
-
selected_videos = videos_data[:num_videos]
|
80 |
-
|
81 |
-
logger.info(f"Videos encontrados (relevancia):")
|
82 |
-
for idx, (url, score, title) in enumerate(selected_videos, 1):
|
83 |
-
logger.info(f"{idx}. {title} (score: {score:.2f})")
|
84 |
-
|
85 |
-
return [url for url, _, _ in selected_videos]
|
86 |
-
|
87 |
-
except Exception as e:
|
88 |
-
logger.error(f"Error en búsqueda semántica: {e}")
|
89 |
-
return []
|
90 |
-
|
91 |
-
# Generación de script con contexto mejorado
|
92 |
-
def generate_script(prompt: str, custom_text: Optional[str] = None) -> str:
|
93 |
-
"""Genera un script contextualizado con IA"""
|
94 |
-
if custom_text and custom_text.strip():
|
95 |
-
return custom_text.strip()
|
96 |
-
|
97 |
-
if not prompt or not prompt.strip():
|
98 |
-
return "Error: Proporciona un tema o guion"
|
99 |
-
|
100 |
-
try:
|
101 |
-
# Prompt mejorado para generación contextual
|
102 |
-
context_prompt = f"""
|
103 |
-
Genera un guion detallado para un video sobre '{prompt}'.
|
104 |
-
El formato debe ser:
|
105 |
-
1. [Concepto 1]: Descripción breve (15-25 palabras)
|
106 |
-
2. [Concepto 2]: Descripción breve
|
107 |
-
...
|
108 |
-
Incluye detalles visuales entre [] para ayudar a seleccionar imágenes.
|
109 |
-
Ejemplo: [playa con palmeras] o [ciudad moderna con rascacielos]
|
110 |
-
"""
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
temperature=0.7,
|
118 |
-
top_k=50,
|
119 |
-
top_p=0.9
|
120 |
-
)[0]['generated_text']
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
127 |
except Exception as e:
|
128 |
-
logger.error(f"
|
129 |
-
return
|
130 |
|
131 |
-
# Sistema mejorado de descarga de videos
|
132 |
def download_video_segment(url: str, duration: float, output_path: str) -> bool:
|
133 |
-
"""Descarga y procesa
|
134 |
-
temp_path =
|
135 |
-
|
136 |
try:
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
with open(temp_path, 'wb') as f:
|
141 |
-
for chunk in r.iter_content(chunk_size=1024*1024):
|
142 |
-
if chunk:
|
143 |
-
f.write(chunk)
|
144 |
-
|
145 |
-
# Procesamiento con controles
|
146 |
-
with VideoFileClip(temp_path) as clip:
|
147 |
-
if clip.duration < 2:
|
148 |
-
raise ValueError("Video demasiado corto")
|
149 |
|
|
|
|
|
|
|
|
|
|
|
150 |
end_time = min(duration, clip.duration - 0.1)
|
151 |
subclip = clip.subclip(0, end_time)
|
152 |
|
153 |
-
# Configuración optimizada
|
154 |
subclip.write_videofile(
|
155 |
output_path,
|
156 |
codec="libx264",
|
157 |
audio_codec="aac",
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
ffmpeg_params=[
|
162 |
'-max_muxing_queue_size', '1024',
|
163 |
-
'-crf', '23',
|
164 |
'-movflags', '+faststart'
|
165 |
]
|
166 |
)
|
167 |
-
|
168 |
return True
|
169 |
-
|
170 |
except Exception as e:
|
171 |
-
logger.error(f"
|
172 |
return False
|
173 |
finally:
|
174 |
-
if os.path.exists(temp_path):
|
175 |
os.remove(temp_path)
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
search_query = " ".join(extract_keywords(script)) or prompt
|
186 |
-
video_urls = fetch_semantic_videos(search_query, script)
|
187 |
-
|
188 |
-
if not video_urls:
|
189 |
-
return "Error: No se encontraron videos relevantes. Intenta con otro tema."
|
190 |
-
|
191 |
-
# 3. Generación de voz
|
192 |
-
voice_file = f"voice_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
|
193 |
-
if not run_async(generate_voice(script, voice_file)):
|
194 |
-
return "Error: No se pudo generar la narración."
|
195 |
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
try:
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
clips = []
|
204 |
-
segment_duration =
|
205 |
|
206 |
-
for
|
207 |
-
clip_path = f"segment_{
|
208 |
if download_video_segment(url, segment_duration, clip_path):
|
209 |
clips.append(VideoFileClip(clip_path))
|
210 |
|
211 |
if not clips:
|
212 |
-
|
213 |
-
|
214 |
-
|
|
|
215 |
final_video = concatenate_videoclips(clips, method="compose")
|
216 |
audio_clip = AudioFileClip(voice_file)
|
|
|
217 |
|
218 |
-
# Añadir música de fondo si existe
|
219 |
-
if music_file and os.path.exists(music_file.name):
|
220 |
-
music = audio_loop(AudioFileClip(music_file.name), duration=audio_clip.duration)
|
221 |
-
final_audio = CompositeAudioClip([audio_clip, music.volumex(0.2)])
|
222 |
-
else:
|
223 |
-
final_audio = audio_clip
|
224 |
-
|
225 |
-
final_video = final_video.set_audio(final_audio)
|
226 |
-
|
227 |
-
# Renderizado final optimizado
|
228 |
final_video.write_videofile(
|
229 |
output_path,
|
230 |
codec="libx264",
|
231 |
audio_codec="aac",
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
bitrate="5000k"
|
236 |
)
|
237 |
|
238 |
return output_path
|
239 |
-
|
240 |
except Exception as e:
|
241 |
-
logger.error(f"Error
|
242 |
-
return
|
243 |
finally:
|
244 |
# Limpieza
|
245 |
for clip in clips:
|
@@ -250,72 +233,28 @@ def create_contextual_video(prompt: str, custom_text: Optional[str] = None, musi
|
|
250 |
if os.path.exists(f"segment_{i}.mp4"):
|
251 |
os.remove(f"segment_{i}.mp4")
|
252 |
|
253 |
-
# Interfaz
|
254 |
-
with gr.Blocks(theme=gr.themes.Soft()) as
|
255 |
-
gr.Markdown(""
|
256 |
-
# 🎬 Generador de Videos con IA Semántica
|
257 |
-
**Crea videos donde las imágenes coinciden perfectamente con tu texto**
|
258 |
-
""")
|
259 |
|
260 |
with gr.Row():
|
261 |
-
with gr.Column(
|
262 |
-
gr.
|
263 |
-
|
264 |
-
|
265 |
-
gr.Markdown("""
|
266 |
-
- **Describe tu tema con detalles**: "Playas del Caribe con arena blanca" en vez de solo "playas"
|
267 |
-
- **Usa sustantivos concretos**: "Animales de la selva amazónica" > "naturaleza"
|
268 |
-
- **Sé específico**: "Tecnología 2024" > "Avances en inteligencia artificial 2024"
|
269 |
-
""")
|
270 |
-
|
271 |
-
gr.Examples(
|
272 |
-
examples=[
|
273 |
-
["Lugares históricos de Europa con arquitectura medieval"],
|
274 |
-
["Tecnologías emergentes en inteligencia artificial para 2024"],
|
275 |
-
["Recetas tradicionales mexicanas con ingredientes autóctonos"]
|
276 |
-
],
|
277 |
-
inputs=[prompt],
|
278 |
-
label="Ejemplos de prompts efectivos"
|
279 |
-
)
|
280 |
-
|
281 |
-
with gr.Column(scale=2):
|
282 |
-
prompt = gr.Textbox(
|
283 |
-
label="Tema principal del video",
|
284 |
-
placeholder="Ej: 'Top 5 innovaciones tecnológicas de 2024'",
|
285 |
max_lines=2
|
286 |
)
|
|
|
287 |
|
288 |
-
|
289 |
-
|
290 |
-
placeholder="Ej: 1. [Robot humanoide] Avances en robótica...",
|
291 |
-
lines=6
|
292 |
-
)
|
293 |
-
|
294 |
-
music_file = gr.File(
|
295 |
-
label="Música de fondo (opcional - MP3)",
|
296 |
-
type="filepath",
|
297 |
-
file_types=[".mp3"]
|
298 |
-
)
|
299 |
-
|
300 |
-
submit = gr.Button("🚀 Generar Video", variant="primary")
|
301 |
-
|
302 |
-
output = gr.Video(
|
303 |
-
label="Video Generado",
|
304 |
-
format="mp4",
|
305 |
-
interactive=False
|
306 |
-
)
|
307 |
|
308 |
-
|
309 |
-
fn=
|
310 |
-
inputs=
|
311 |
-
outputs=
|
312 |
-
api_name="generate_video"
|
313 |
)
|
314 |
|
|
|
315 |
if __name__ == "__main__":
|
316 |
-
|
317 |
-
server_name="0.0.0.0",
|
318 |
-
server_port=7860,
|
319 |
-
share=True,
|
320 |
-
debug=True
|
321 |
-
)
|
|
|
1 |
import os
|
2 |
import re
|
3 |
import random
|
4 |
+
import time
|
5 |
+
import logging
|
6 |
+
from typing import Optional, List
|
|
|
|
|
|
|
7 |
from datetime import datetime
|
8 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Configuración inicial para HF Spaces
|
11 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
12 |
+
os.environ["GRADIO_ANALYTICS_ENABLED"] = "false"
|
13 |
+
os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = "1"
|
14 |
+
|
15 |
+
# Configuración de logging
|
16 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
try:
|
20 |
+
import requests
|
21 |
+
from moviepy.editor import VideoFileClip, concatenate_videoclips, AudioFileClip, CompositeAudioClip
|
22 |
+
from moviepy.audio.fx.all import audio_loop
|
23 |
+
import edge_tts
|
24 |
+
import gradio as gr
|
25 |
+
import numpy as np
|
26 |
+
from transformers import pipeline
|
27 |
+
import backoff
|
28 |
+
except ImportError as e:
|
29 |
+
logger.error(f"Error importing dependencies: {e}")
|
30 |
raise
|
31 |
|
32 |
+
# Constantes configurables
|
33 |
+
MAX_VIDEOS = 3 # Reducir para evitar rate limiting
|
34 |
+
VIDEO_SEGMENT_DURATION = 5 # Duración de cada segmento en segundos
|
35 |
+
MAX_RETRIES = 3 # Máximo de reintentos para descargas
|
36 |
+
REQUEST_TIMEOUT = 15 # Timeout para requests
|
37 |
+
|
38 |
+
# Configuración de modelos
|
39 |
+
MODEL_NAME = "facebook/mbart-large-50"
|
40 |
+
PEXELS_API_KEY = os.getenv("PEXELS_API_KEY", "")
|
41 |
+
|
42 |
+
@backoff.on_exception(backoff.expo,
|
43 |
+
(requests.exceptions.RequestException,
|
44 |
+
requests.exceptions.HTTPError),
|
45 |
+
max_tries=MAX_RETRIES,
|
46 |
+
max_time=30)
|
47 |
+
def safe_download(url: str, timeout: int = REQUEST_TIMEOUT) -> Optional[str]:
|
48 |
+
"""Descarga segura con reintentos y manejo de rate limiting"""
|
49 |
try:
|
50 |
+
response = requests.get(url, stream=True, timeout=timeout)
|
51 |
response.raise_for_status()
|
52 |
|
53 |
+
filename = f"temp_{random.randint(1000,9999)}.mp4"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
with open(filename, 'wb') as f:
|
56 |
+
for chunk in response.iter_content(chunk_size=8192):
|
57 |
+
f.write(chunk)
|
58 |
+
|
59 |
+
return filename
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
except requests.exceptions.HTTPError as e:
|
62 |
+
if e.response.status_code == 429:
|
63 |
+
retry_after = int(e.response.headers.get('Retry-After', 5))
|
64 |
+
logger.warning(f"Rate limited. Waiting {retry_after} seconds...")
|
65 |
+
time.sleep(retry_after)
|
66 |
+
logger.error(f"Download failed: {str(e)}")
|
67 |
+
return None
|
68 |
except Exception as e:
|
69 |
+
logger.error(f"Unexpected download error: {str(e)}")
|
70 |
+
return None
|
71 |
|
|
|
72 |
def download_video_segment(url: str, duration: float, output_path: str) -> bool:
|
73 |
+
"""Descarga y procesa un segmento de video"""
|
74 |
+
temp_path = None
|
|
|
75 |
try:
|
76 |
+
temp_path = safe_download(url)
|
77 |
+
if not temp_path:
|
78 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
with VideoFileClip(temp_path) as clip:
|
81 |
+
if clip.duration < 1:
|
82 |
+
logger.error("Video demasiado corto")
|
83 |
+
return False
|
84 |
+
|
85 |
end_time = min(duration, clip.duration - 0.1)
|
86 |
subclip = clip.subclip(0, end_time)
|
87 |
|
88 |
+
# Configuración optimizada para HF Spaces
|
89 |
subclip.write_videofile(
|
90 |
output_path,
|
91 |
codec="libx264",
|
92 |
audio_codec="aac",
|
93 |
+
threads=2,
|
94 |
+
preset='ultrafast',
|
95 |
+
verbose=False,
|
96 |
ffmpeg_params=[
|
97 |
'-max_muxing_queue_size', '1024',
|
|
|
98 |
'-movflags', '+faststart'
|
99 |
]
|
100 |
)
|
|
|
101 |
return True
|
102 |
+
|
103 |
except Exception as e:
|
104 |
+
logger.error(f"Video processing error: {str(e)}")
|
105 |
return False
|
106 |
finally:
|
107 |
+
if temp_path and os.path.exists(temp_path):
|
108 |
os.remove(temp_path)
|
109 |
|
110 |
+
def fetch_pexels_videos(query: str) -> List[str]:
|
111 |
+
"""Busca videos en Pexels con manejo de errores"""
|
112 |
+
if not PEXELS_API_KEY:
|
113 |
+
logger.error("PEXELS_API_KEY no configurada")
|
114 |
+
return []
|
115 |
+
|
116 |
+
headers = {"Authorization": PEXELS_API_KEY}
|
117 |
+
url = f"https://api.pexels.com/videos/search?query={query}&per_page={MAX_VIDEOS}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
try:
|
120 |
+
response = requests.get(url, headers=headers, timeout=REQUEST_TIMEOUT)
|
121 |
+
response.raise_for_status()
|
122 |
+
|
123 |
+
videos = []
|
124 |
+
for video in response.json().get("videos", [])[:MAX_VIDEOS]:
|
125 |
+
video_files = [vf for vf in video.get("video_files", [])
|
126 |
+
if vf.get("width", 0) >= 720] # Calidad mínima
|
127 |
+
if video_files:
|
128 |
+
best_file = max(video_files, key=lambda x: x.get("width", 0))
|
129 |
+
videos.append(best_file["link"])
|
130 |
+
|
131 |
+
return videos
|
132 |
|
133 |
+
except Exception as e:
|
134 |
+
logger.error(f"Error fetching Pexels videos: {str(e)}")
|
135 |
+
return []
|
136 |
+
|
137 |
+
def generate_script(prompt: str) -> str:
|
138 |
+
"""Genera un script usando IA local con fallback"""
|
139 |
try:
|
140 |
+
generator = pipeline("text-generation", model=MODEL_NAME)
|
141 |
+
result = generator(
|
142 |
+
f"Genera un guion breve sobre {prompt} en español con {MAX_VIDEOS} puntos:",
|
143 |
+
max_length=200,
|
144 |
+
num_return_sequences=1
|
145 |
+
)[0]['generated_text']
|
146 |
+
return result
|
147 |
+
except Exception as e:
|
148 |
+
logger.error(f"Error generating script: {str(e)}")
|
149 |
+
return f"1. Punto uno sobre {prompt}\n2. Punto dos\n3. Punto tres"
|
150 |
+
|
151 |
+
async def generate_voice(text: str, output_file: str = "voice.mp3") -> bool:
|
152 |
+
"""Genera narración de voz con manejo de errores"""
|
153 |
+
try:
|
154 |
+
communicate = edge_tts.Communicate(text, voice="es-MX-DaliaNeural")
|
155 |
+
await communicate.save(output_file)
|
156 |
+
return True
|
157 |
+
except Exception as e:
|
158 |
+
logger.error(f"Voice generation failed: {str(e)}")
|
159 |
+
return False
|
160 |
+
|
161 |
+
def run_async(coro):
|
162 |
+
"""Ejecuta corrutinas asíncronas desde código síncrono"""
|
163 |
+
import asyncio
|
164 |
+
loop = asyncio.new_event_loop()
|
165 |
+
asyncio.set_event_loop(loop)
|
166 |
+
try:
|
167 |
+
return loop.run_until_complete(coro)
|
168 |
+
finally:
|
169 |
+
loop.close()
|
170 |
+
|
171 |
+
def create_video(prompt: str) -> Optional[str]:
|
172 |
+
"""Función principal para crear el video"""
|
173 |
+
try:
|
174 |
+
# 1. Generar contenido
|
175 |
+
script = generate_script(prompt)
|
176 |
+
logger.info(f"Script generado: {script[:100]}...")
|
177 |
+
|
178 |
+
# 2. Buscar videos
|
179 |
+
video_urls = fetch_pexels_videos(prompt)
|
180 |
+
if not video_urls:
|
181 |
+
logger.error("No se encontraron videos")
|
182 |
+
return None
|
183 |
+
|
184 |
+
# 3. Generar voz
|
185 |
+
voice_file = "voice.mp3"
|
186 |
+
if not run_async(generate_voice(script, voice_file)):
|
187 |
+
logger.error("No se pudo generar voz")
|
188 |
+
return None
|
189 |
+
|
190 |
+
# 4. Procesar videos
|
191 |
+
output_dir = "output"
|
192 |
+
os.makedirs(output_dir, exist_ok=True)
|
193 |
+
output_path = os.path.join(output_dir, f"video_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp4")
|
194 |
+
|
195 |
clips = []
|
196 |
+
segment_duration = VIDEO_SEGMENT_DURATION
|
197 |
|
198 |
+
for i, url in enumerate(video_urls):
|
199 |
+
clip_path = f"segment_{i}.mp4"
|
200 |
if download_video_segment(url, segment_duration, clip_path):
|
201 |
clips.append(VideoFileClip(clip_path))
|
202 |
|
203 |
if not clips:
|
204 |
+
logger.error("No se pudieron procesar los videos")
|
205 |
+
return None
|
206 |
+
|
207 |
+
# 5. Ensamblar video final
|
208 |
final_video = concatenate_videoclips(clips, method="compose")
|
209 |
audio_clip = AudioFileClip(voice_file)
|
210 |
+
final_video = final_video.set_audio(audio_clip)
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
final_video.write_videofile(
|
213 |
output_path,
|
214 |
codec="libx264",
|
215 |
audio_codec="aac",
|
216 |
+
threads=2,
|
217 |
+
preset='ultrafast',
|
218 |
+
verbose=False
|
|
|
219 |
)
|
220 |
|
221 |
return output_path
|
222 |
+
|
223 |
except Exception as e:
|
224 |
+
logger.error(f"Error creating video: {str(e)}")
|
225 |
+
return None
|
226 |
finally:
|
227 |
# Limpieza
|
228 |
for clip in clips:
|
|
|
233 |
if os.path.exists(f"segment_{i}.mp4"):
|
234 |
os.remove(f"segment_{i}.mp4")
|
235 |
|
236 |
+
# Interfaz Gradio optimizada
|
237 |
+
with gr.Blocks(title="Generador de Videos HF", theme=gr.themes.Soft()) as app:
|
238 |
+
gr.Markdown("# 🎥 Generador Automático de Videos")
|
|
|
|
|
|
|
239 |
|
240 |
with gr.Row():
|
241 |
+
with gr.Column():
|
242 |
+
prompt_input = gr.Textbox(
|
243 |
+
label="Tema del video",
|
244 |
+
placeholder="Ej: Paisajes naturales de Chile",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
max_lines=2
|
246 |
)
|
247 |
+
generate_btn = gr.Button("Generar Video", variant="primary")
|
248 |
|
249 |
+
with gr.Column():
|
250 |
+
output_video = gr.Video(label="Resultado", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
+
generate_btn.click(
|
253 |
+
fn=create_video,
|
254 |
+
inputs=prompt_input,
|
255 |
+
outputs=output_video
|
|
|
256 |
)
|
257 |
|
258 |
+
# Para Hugging Face Spaces
|
259 |
if __name__ == "__main__":
|
260 |
+
app.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|