import os import requests import edge_tts import gradio as gr from moviepy.editor import * from moviepy.editor import AudioFileClip, CompositeVideoClip, concatenate_videoclips, ImageClip, TextClip from moviepy.video.fx.all import resize, scroll from PIL import Image import numpy as np import io import asyncio # 1. Descargar imágenes/videos de stock (Pexels) def get_stock_media(query, is_video=False): API_KEY = os.getenv("PEXELS_API_KEY") # Configura esto en HF Secrets url = f"https://api.pexels.com/v1/{'videos' if is_video else 'photos'}/search?query={query}&per_page=1" headers = {"Authorization": API_KEY} response = requests.get(url, headers=headers).json() if is_video: video_url = response["videos"][0]["video_files"][0]["link"] return requests.get(video_url).content else: image_url = response["photos"][0]["src"]["large"] return Image.open(io.BytesIO(requests.get(image_url).content)) # 2. Generar voz con Edge TTS (todos los modelos) async def generate_voice(text, voice="es-ES-AlvaroNeural", output_path="voice.mp3"): communicate = edge_tts.Communicate(text=text, voice=voice) await communicate.save(output_path) # 3. Añadir música de fondo (en loop si es necesario) def add_background_music(audio_clip, music_path="background.mp3", volume=0.2): music = AudioFileClip(music_path).volumex(volume) if music.duration < audio_clip.duration: music = music.loop(duration=audio_clip.duration) return CompositeAudioClip([audio_clip, music.set_start(0)]) # 4. Efectos de movimiento/zoom para imágenes def apply_effects(clip, zoom_factor=1.1, effect_duration=2): return clip.resize(zoom_factor).set_position('center').fx(vfx.scroll, h=100, w=100) # 5. Crear subtítulos dinámicos (karaoke-style) def generate_subtitles(text, duration, fontsize=30, color="white", stroke_color="black"): words = text.split() word_duration = duration / len(words) clips = [] for i, word in enumerate(words): txt_clip = TextClip( " ".join(words[:i+1]), fontsize=fontsize, color=color, stroke_color=stroke_color, font="Arial-Bold", ).set_start(i * word_duration).set_duration(word_duration) clips.append(txt_clip) return concatenate_videoclips(clips).set_position(("center", "bottom")) # 6. Función principal para generar el video async def generate_video(script, voice_model, music_file=None): clips = [] for i, scene in enumerate(script): # Descargar imagen y generar voz img = get_stock_media(scene["prompt"]) img.save(f"scene_{i}.jpg") await generate_voice(scene["text"], voice_model, f"voice_{i}.mp3") # Crear clip con efectos audio = AudioFileClip(f"voice_{i}.mp3") clip = ImageClip(f"scene_{i}.jpg").set_duration(audio.duration) clip = apply_effects(clip) # Efecto de zoom/movimiento # Subtítulos dinámicos subtitles = generate_subtitles(scene["text"], audio.duration) final_clip = CompositeVideoClip([clip, subtitles]).set_audio(audio) clips.append(final_clip) # Unir clips y añadir música final_video = concatenate_videoclips(clips) if music_file: final_video.audio = add_background_music(final_video.audio, music_file.name) # Exportar output_path = "final_video.mp4" final_video.write_videofile(output_path, fps=24, codec="libx264") return output_path # 7. Interfaz Gradio def ui(script, voice_model, music_file): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) output_video = loop.run_until_complete(generate_video(script, voice_model, music_file)) return output_video # Lista de voces Edge TTS (ejemplo) voices = ["es-ES-AlvaroNeural", "es-MX-DaliaNeural", "en-US-JennyNeural", "fr-FR-HenriNeural"] # Diseño de la interfaz with gr.Blocks() as demo: gr.Markdown("## 🎬 Generador de Videos con IA (100% Gratis)") with gr.Row(): script_input = gr.Textbox(label="Script (JSON)", placeholder='[{"prompt": "futuristic city", "text": "Texto aquí..."}]') voice_dropdown = gr.Dropdown(choices=voices, label="Voz Edge TTS", value="es-ES-AlvaroNeural") music_upload = gr.File(label="Música de fondo (opcional)", type="file") generate_btn = gr.Button("Generar Video") output_video = gr.Video(label="Video Generado") generate_btn.click( fn=ui, inputs=[script_input, voice_dropdown, music_upload], outputs=output_video, ) demo.launch()