Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| from gradio_imageslider import ImageSlider | |
| from PIL import Image | |
| import numpy as np | |
| from aura_sr import AuraSR | |
| import torch | |
| import spaces | |
| # Initialize the AuraSR model | |
| aura_sr = AuraSR.from_pretrained("fal-ai/AuraSR") | |
| def process_image(input_image): | |
| if input_image is None: | |
| return None | |
| # Ensure input_image is a numpy array | |
| input_array = np.array(input_image) | |
| # Convert to PIL Image for resizing | |
| pil_image = Image.fromarray(input_array) | |
| # Resize the longest side to 256 while maintaining aspect ratio | |
| width, height = pil_image.size | |
| if width > height: | |
| new_width = 256 | |
| new_height = int(height * (256 / width)) | |
| else: | |
| new_height = 256 | |
| new_width = int(width * (256 / height)) | |
| resized_image = pil_image.resize((new_width, new_height), Image.LANCZOS) | |
| # Convert back to numpy array | |
| resized_array = np.array(resized_image) | |
| # Upscale the image using AuraSR | |
| with torch.no_grad(): | |
| upscaled_image = aura_sr.upscale_4x(resized_array) | |
| # Convert result to numpy array if it's not already | |
| result_array = np.array(upscaled_image) | |
| return [input_array, result_array] | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Image Upscaler using AuraSR") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| input_image = gr.Image(label="Input Image", type="numpy") | |
| process_btn = gr.Button("Upscale Image") | |
| with gr.Column(scale=1): | |
| output_slider = ImageSlider(label="Before / After", type="numpy") | |
| process_btn.click( | |
| fn=process_image, | |
| inputs=[input_image], | |
| outputs=output_slider | |
| ) | |
| demo.launch(debug=True) |