File size: 8,112 Bytes
77f10a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
from torch import Tensor, nn

from comfy.ldm.flux.math import attention
from comfy.ldm.flux.layers import (
    MLPEmbedder,
    RMSNorm,
    QKNorm,
    SelfAttention,
    ModulationOut,
)



class ChromaModulationOut(ModulationOut):
    @classmethod
    def from_offset(cls, tensor: torch.Tensor, offset: int = 0) -> ModulationOut:
        return cls(
            shift=tensor[:, offset : offset + 1, :],
            scale=tensor[:, offset + 1 : offset + 2, :],
            gate=tensor[:, offset + 2 : offset + 3, :],
        )




class Approximator(nn.Module):
    def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers = 5, dtype=None, device=None, operations=None):
        super().__init__()
        self.in_proj = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
        self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
        self.norms = nn.ModuleList([RMSNorm(hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
        self.out_proj = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)

    @property
    def device(self):
        # Get the device of the module (assumes all parameters are on the same device)
        return next(self.parameters()).device

    def forward(self, x: Tensor) -> Tensor:
        x = self.in_proj(x)

        for layer, norms in zip(self.layers, self.norms):
            x = x + layer(norms(x))

        x = self.out_proj(x)

        return x


class DoubleStreamBlock(nn.Module):
    def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
        super().__init__()

        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        self.num_heads = num_heads
        self.hidden_size = hidden_size
        self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)

        self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.img_mlp = nn.Sequential(
            operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
            nn.GELU(approximate="tanh"),
            operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
        )

        self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)

        self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.txt_mlp = nn.Sequential(
            operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
            nn.GELU(approximate="tanh"),
            operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
        )
        self.flipped_img_txt = flipped_img_txt

    def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None):
        (img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec

        # prepare image for attention
        img_modulated = self.img_norm1(img)
        img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
        img_qkv = self.img_attn.qkv(img_modulated)
        img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)

        # prepare txt for attention
        txt_modulated = self.txt_norm1(txt)
        txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
        txt_qkv = self.txt_attn.qkv(txt_modulated)
        txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)

        # run actual attention
        attn = attention(torch.cat((txt_q, img_q), dim=2),
                         torch.cat((txt_k, img_k), dim=2),
                         torch.cat((txt_v, img_v), dim=2),
                         pe=pe, mask=attn_mask)

        txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]

        # calculate the img bloks
        img = img + img_mod1.gate * self.img_attn.proj(img_attn)
        img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)

        # calculate the txt bloks
        txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
        txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)

        if txt.dtype == torch.float16:
            txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)

        return img, txt


class SingleStreamBlock(nn.Module):
    """

    A DiT block with parallel linear layers as described in

    https://arxiv.org/abs/2302.05442 and adapted modulation interface.

    """

    def __init__(

        self,

        hidden_size: int,

        num_heads: int,

        mlp_ratio: float = 4.0,

        qk_scale: float = None,

        dtype=None,

        device=None,

        operations=None

    ):
        super().__init__()
        self.hidden_dim = hidden_size
        self.num_heads = num_heads
        head_dim = hidden_size // num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
        # qkv and mlp_in
        self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
        # proj and mlp_out
        self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)

        self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)

        self.hidden_size = hidden_size
        self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)

        self.mlp_act = nn.GELU(approximate="tanh")

    def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None) -> Tensor:
        mod = vec
        x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
        qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)

        q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k = self.norm(q, k, v)

        # compute attention
        attn = attention(q, k, v, pe=pe, mask=attn_mask)
        # compute activation in mlp stream, cat again and run second linear layer
        output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
        x += mod.gate * output
        if x.dtype == torch.float16:
            x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
        return x


class LastLayer(nn.Module):
    def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
        super().__init__()
        self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.linear = operations.Linear(hidden_size, out_channels, bias=True, dtype=dtype, device=device)

    def forward(self, x: Tensor, vec: Tensor) -> Tensor:
        shift, scale = vec
        shift = shift.squeeze(1)
        scale = scale.squeeze(1)
        x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
        x = self.linear(x)
        return x