File size: 11,870 Bytes
77f10a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#Original code can be found on: https://github.com/black-forest-labs/flux

from dataclasses import dataclass

import torch
from torch import Tensor, nn
from einops import rearrange, repeat
import comfy.ldm.common_dit

from comfy.ldm.flux.layers import (
    EmbedND,
    timestep_embedding,
)

from .layers import (
    DoubleStreamBlock,
    LastLayer,
    SingleStreamBlock,
    Approximator,
    ChromaModulationOut,
)


@dataclass
class ChromaParams:
    in_channels: int
    out_channels: int
    context_in_dim: int
    hidden_size: int
    mlp_ratio: float
    num_heads: int
    depth: int
    depth_single_blocks: int
    axes_dim: list
    theta: int
    patch_size: int
    qkv_bias: bool
    in_dim: int
    out_dim: int
    hidden_dim: int
    n_layers: int




class Chroma(nn.Module):
    """

    Transformer model for flow matching on sequences.

    """

    def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
        super().__init__()
        self.dtype = dtype
        params = ChromaParams(**kwargs)
        self.params = params
        self.patch_size = params.patch_size
        self.in_channels = params.in_channels
        self.out_channels = params.out_channels
        if params.hidden_size % params.num_heads != 0:
            raise ValueError(
                f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
            )
        pe_dim = params.hidden_size // params.num_heads
        if sum(params.axes_dim) != pe_dim:
            raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
        self.hidden_size = params.hidden_size
        self.num_heads = params.num_heads
        self.in_dim = params.in_dim
        self.out_dim = params.out_dim
        self.hidden_dim = params.hidden_dim
        self.n_layers = params.n_layers
        self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
        self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
        self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
        # set as nn identity for now, will overwrite it later.
        self.distilled_guidance_layer = Approximator(
                    in_dim=self.in_dim,
                    hidden_dim=self.hidden_dim,
                    out_dim=self.out_dim,
                    n_layers=self.n_layers,
                    dtype=dtype, device=device, operations=operations
                )


        self.double_blocks = nn.ModuleList(
            [
                DoubleStreamBlock(
                    self.hidden_size,
                    self.num_heads,
                    mlp_ratio=params.mlp_ratio,
                    qkv_bias=params.qkv_bias,
                    dtype=dtype, device=device, operations=operations
                )
                for _ in range(params.depth)
            ]
        )

        self.single_blocks = nn.ModuleList(
            [
                SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
                for _ in range(params.depth_single_blocks)
            ]
        )

        if final_layer:
            self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)

        self.skip_mmdit = []
        self.skip_dit = []
        self.lite = False

    def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0):
        # This function slices up the modulations tensor which has the following layout:
        #   single     : num_single_blocks * 3 elements
        #   double_img : num_double_blocks * 6 elements
        #   double_txt : num_double_blocks * 6 elements
        #   final      : 2 elements
        if block_type == "final":
            return (tensor[:, -2:-1, :], tensor[:, -1:, :])
        single_block_count = self.params.depth_single_blocks
        double_block_count = self.params.depth
        offset = 3 * idx
        if block_type == "single":
            return ChromaModulationOut.from_offset(tensor, offset)
        # Double block modulations are 6 elements so we double 3 * idx.
        offset *= 2
        if block_type in {"double_img", "double_txt"}:
            # Advance past the single block modulations.
            offset += 3 * single_block_count
            if block_type == "double_txt":
                # Advance past the double block img modulations.
                offset += 6 * double_block_count
            return (
                ChromaModulationOut.from_offset(tensor, offset),
                ChromaModulationOut.from_offset(tensor, offset + 3),
            )
        raise ValueError("Bad block_type")


    def forward_orig(

        self,

        img: Tensor,

        img_ids: Tensor,

        txt: Tensor,

        txt_ids: Tensor,

        timesteps: Tensor,

        guidance: Tensor = None,

        control = None,

        transformer_options={},

        attn_mask: Tensor = None,

    ) -> Tensor:
        patches_replace = transformer_options.get("patches_replace", {})
        if img.ndim != 3 or txt.ndim != 3:
            raise ValueError("Input img and txt tensors must have 3 dimensions.")

        # running on sequences img
        img = self.img_in(img)

        # distilled vector guidance
        mod_index_length = 344
        distill_timestep = timestep_embedding(timesteps.detach().clone(), 16).to(img.device, img.dtype)
        # guidance = guidance *
        distil_guidance = timestep_embedding(guidance.detach().clone(), 16).to(img.device, img.dtype)

        # get all modulation index
        modulation_index = timestep_embedding(torch.arange(mod_index_length, device=img.device), 32).to(img.device, img.dtype)
        # we need to broadcast the modulation index here so each batch has all of the index
        modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
        # and we need to broadcast timestep and guidance along too
        timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype)
        # then and only then we could concatenate it together
        input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype)

        mod_vectors = self.distilled_guidance_layer(input_vec)

        txt = self.txt_in(txt)

        ids = torch.cat((txt_ids, img_ids), dim=1)
        pe = self.pe_embedder(ids)

        blocks_replace = patches_replace.get("dit", {})
        for i, block in enumerate(self.double_blocks):
            if i not in self.skip_mmdit:
                double_mod = (
                    self.get_modulations(mod_vectors, "double_img", idx=i),
                    self.get_modulations(mod_vectors, "double_txt", idx=i),
                )
                if ("double_block", i) in blocks_replace:
                    def block_wrap(args):
                        out = {}
                        out["img"], out["txt"] = block(img=args["img"],
                                                       txt=args["txt"],
                                                       vec=args["vec"],
                                                       pe=args["pe"],
                                                       attn_mask=args.get("attn_mask"))
                        return out

                    out = blocks_replace[("double_block", i)]({"img": img,
                                                               "txt": txt,
                                                               "vec": double_mod,
                                                               "pe": pe,
                                                               "attn_mask": attn_mask},
                                                              {"original_block": block_wrap})
                    txt = out["txt"]
                    img = out["img"]
                else:
                    img, txt = block(img=img,
                                     txt=txt,
                                     vec=double_mod,
                                     pe=pe,
                                     attn_mask=attn_mask)

                if control is not None: # Controlnet
                    control_i = control.get("input")
                    if i < len(control_i):
                        add = control_i[i]
                        if add is not None:
                            img += add

        img = torch.cat((txt, img), 1)

        for i, block in enumerate(self.single_blocks):
            if i not in self.skip_dit:
                single_mod = self.get_modulations(mod_vectors, "single", idx=i)
                if ("single_block", i) in blocks_replace:
                    def block_wrap(args):
                        out = {}
                        out["img"] = block(args["img"],
                                           vec=args["vec"],
                                           pe=args["pe"],
                                           attn_mask=args.get("attn_mask"))
                        return out

                    out = blocks_replace[("single_block", i)]({"img": img,
                                                               "vec": single_mod,
                                                               "pe": pe,
                                                               "attn_mask": attn_mask},
                                                              {"original_block": block_wrap})
                    img = out["img"]
                else:
                    img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask)

                if control is not None: # Controlnet
                    control_o = control.get("output")
                    if i < len(control_o):
                        add = control_o[i]
                        if add is not None:
                            img[:, txt.shape[1] :, ...] += add

        img = img[:, txt.shape[1] :, ...]
        final_mod = self.get_modulations(mod_vectors, "final")
        img = self.final_layer(img, vec=final_mod)  # (N, T, patch_size ** 2 * out_channels)
        return img

    def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
        bs, c, h, w = x.shape
        patch_size = 2
        x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))

        img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)

        h_len = ((h + (patch_size // 2)) // patch_size)
        w_len = ((w + (patch_size // 2)) // patch_size)
        img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
        img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
        img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
        img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)

        txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
        out = self.forward_orig(img, img_ids, context, txt_ids, timestep, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
        return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]