File size: 8,458 Bytes
77f10a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from __future__ import annotations


import torch

from enum import Enum
from typing import Optional, Union

from pydantic import BaseModel, Field, confloat



class LumaIO:
    LUMA_REF = "LUMA_REF"
    LUMA_CONCEPTS = "LUMA_CONCEPTS"


class LumaReference:
    def __init__(self, image: torch.Tensor, weight: float):
        self.image = image
        self.weight = weight

    def create_api_model(self, download_url: str):
        return LumaImageRef(url=download_url, weight=self.weight)

class LumaReferenceChain:
    def __init__(self, first_ref: LumaReference=None):
        self.refs: list[LumaReference] = []
        if first_ref:
            self.refs.append(first_ref)

    def add(self, luma_ref: LumaReference=None):
        self.refs.append(luma_ref)

    def create_api_model(self, download_urls: list[str], max_refs=4):
        if len(self.refs) == 0:
            return None
        api_refs: list[LumaImageRef] = []
        for ref, url in zip(self.refs, download_urls):
            api_ref = LumaImageRef(url=url, weight=ref.weight)
            api_refs.append(api_ref)
        return api_refs

    def clone(self):
        c = LumaReferenceChain()
        for ref in self.refs:
            c.add(ref)
        return c


class LumaConcept:
    def __init__(self, key: str):
        self.key = key


class LumaConceptChain:
    def __init__(self, str_list: list[str] = None):
        self.concepts: list[LumaConcept] = []
        if str_list is not None:
            for c in str_list:
                if c != "None":
                    self.add(LumaConcept(key=c))

    def add(self, concept: LumaConcept):
        self.concepts.append(concept)

    def create_api_model(self):
        if len(self.concepts) == 0:
            return None
        api_concepts: list[LumaConceptObject] = []
        for concept in self.concepts:
            if concept.key == "None":
                continue
            api_concepts.append(LumaConceptObject(key=concept.key))
        if len(api_concepts) == 0:
            return None
        return api_concepts

    def clone(self):
        c = LumaConceptChain()
        for concept in self.concepts:
            c.add(concept)
        return c

    def clone_and_merge(self, other: LumaConceptChain):
        c = self.clone()
        for concept in other.concepts:
            c.add(concept)
        return c


def get_luma_concepts(include_none=False):
    concepts = []
    if include_none:
        concepts.append("None")
    return concepts + [
        "truck_left",
        "pan_right",
        "pedestal_down",
        "low_angle",
        "pedestal_up",
        "selfie",
        "pan_left",
        "roll_right",
        "zoom_in",
        "over_the_shoulder",
        "orbit_right",
        "orbit_left",
        "static",
        "tiny_planet",
        "high_angle",
        "bolt_cam",
        "dolly_zoom",
        "overhead",
        "zoom_out",
        "handheld",
        "roll_left",
        "pov",
        "aerial_drone",
        "push_in",
        "crane_down",
        "truck_right",
        "tilt_down",
        "elevator_doors",
        "tilt_up",
        "ground_level",
        "pull_out",
        "aerial",
        "crane_up",
        "eye_level"
    ]


class LumaImageModel(str, Enum):
    photon_1 = "photon-1"
    photon_flash_1 = "photon-flash-1"


class LumaVideoModel(str, Enum):
    ray_2 = "ray-2"
    ray_flash_2 = "ray-flash-2"
    ray_1_6 = "ray-1-6"


class LumaAspectRatio(str, Enum):
    ratio_1_1 = "1:1"
    ratio_16_9 = "16:9"
    ratio_9_16 = "9:16"
    ratio_4_3 = "4:3"
    ratio_3_4 = "3:4"
    ratio_21_9 = "21:9"
    ratio_9_21 = "9:21"


class LumaVideoOutputResolution(str, Enum):
    res_540p = "540p"
    res_720p = "720p"
    res_1080p = "1080p"
    res_4k = "4k"


class LumaVideoModelOutputDuration(str, Enum):
    dur_5s = "5s"
    dur_9s = "9s"


class LumaGenerationType(str, Enum):
    video = 'video'
    image = 'image'


class LumaState(str, Enum):
    queued = "queued"
    dreaming = "dreaming"
    completed = "completed"
    failed = "failed"


class LumaAssets(BaseModel):
    video: Optional[str] = Field(None, description='The URL of the video')
    image: Optional[str] = Field(None, description='The URL of the image')
    progress_video: Optional[str] = Field(None, description='The URL of the progress video')


class LumaImageRef(BaseModel):
    '''Used for image gen'''
    url: str = Field(..., description='The URL of the image reference')
    weight: confloat(ge=0.0, le=1.0) = Field(..., description='The weight of the image reference')


class LumaImageReference(BaseModel):
    '''Used for video gen'''
    type: Optional[str] = Field('image', description='Input type, defaults to image')
    url: str = Field(..., description='The URL of the image')


class LumaModifyImageRef(BaseModel):
    url: str = Field(..., description='The URL of the image reference')
    weight: confloat(ge=0.0, le=1.0) = Field(..., description='The weight of the image reference')


class LumaCharacterRef(BaseModel):
    identity0: LumaImageIdentity = Field(..., description='The image identity object')


class LumaImageIdentity(BaseModel):
    images: list[str] = Field(..., description='The URLs of the image identity')


class LumaGenerationReference(BaseModel):
    type: str = Field('generation', description='Input type, defaults to generation')
    id: str = Field(..., description='The ID of the generation')


class LumaKeyframes(BaseModel):
    frame0: Optional[Union[LumaImageReference, LumaGenerationReference]] = Field(None, description='')
    frame1: Optional[Union[LumaImageReference, LumaGenerationReference]] = Field(None, description='')


class LumaConceptObject(BaseModel):
    key: str = Field(..., description='Camera Concept name')


class LumaImageGenerationRequest(BaseModel):
    prompt: str = Field(..., description='The prompt of the generation')
    model: LumaImageModel = Field(LumaImageModel.photon_1, description='The image model used for the generation')
    aspect_ratio: Optional[LumaAspectRatio] = Field(LumaAspectRatio.ratio_16_9, description='The aspect ratio of the generation')
    image_ref: Optional[list[LumaImageRef]] = Field(None, description='List of image reference objects')
    style_ref: Optional[list[LumaImageRef]] = Field(None, description='List of style reference objects')
    character_ref: Optional[LumaCharacterRef] = Field(None, description='The image identity object')
    modify_image_ref: Optional[LumaModifyImageRef] = Field(None, description='The modify image reference object')


class LumaGenerationRequest(BaseModel):
    prompt: str = Field(..., description='The prompt of the generation')
    model: LumaVideoModel = Field(LumaVideoModel.ray_2, description='The video model used for the generation')
    duration: Optional[LumaVideoModelOutputDuration] = Field(None, description='The duration of the generation')
    aspect_ratio: Optional[LumaAspectRatio] = Field(None, description='The aspect ratio of the generation')
    resolution: Optional[LumaVideoOutputResolution] = Field(None, description='The resolution of the generation')
    loop: Optional[bool] = Field(None, description='Whether to loop the video')
    keyframes: Optional[LumaKeyframes] = Field(None, description='The keyframes of the generation')
    concepts: Optional[list[LumaConceptObject]] = Field(None, description='Camera Concepts to apply to generation')


class LumaGeneration(BaseModel):
    id: str = Field(..., description='The ID of the generation')
    generation_type: LumaGenerationType = Field(..., description='Generation type, image or video')
    state: LumaState = Field(..., description='The state of the generation')
    failure_reason: Optional[str] = Field(None, description='The reason for the state of the generation')
    created_at: str = Field(..., description='The date and time when the generation was created')
    assets: Optional[LumaAssets] = Field(None, description='The assets of the generation')
    model: str = Field(..., description='The model used for the generation')
    request: Union[LumaGenerationRequest, LumaImageGenerationRequest] = Field(..., description="The request used for the generation")