File size: 26,738 Bytes
77f10a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
from comfy.comfy_types.node_typing import IO, ComfyNodeABC, InputTypeDict
from inspect import cleandoc
from PIL import Image
import numpy as np
import io
import torch
from comfy_api_nodes.apis import (
    IdeogramGenerateRequest,
    IdeogramGenerateResponse,
    ImageRequest,
    IdeogramV3Request,
    IdeogramV3EditRequest,
)

from comfy_api_nodes.apis.client import (
    ApiEndpoint,
    HttpMethod,
    SynchronousOperation,
)

from comfy_api_nodes.apinode_utils import (
    download_url_to_bytesio,
    bytesio_to_image_tensor,
    resize_mask_to_image,
)
from server import PromptServer

V1_V1_RES_MAP = {
  "Auto":"AUTO",
  "512 x 1536":"RESOLUTION_512_1536",
  "576 x 1408":"RESOLUTION_576_1408",
  "576 x 1472":"RESOLUTION_576_1472",
  "576 x 1536":"RESOLUTION_576_1536",
  "640 x 1024":"RESOLUTION_640_1024",
  "640 x 1344":"RESOLUTION_640_1344",
  "640 x 1408":"RESOLUTION_640_1408",
  "640 x 1472":"RESOLUTION_640_1472",
  "640 x 1536":"RESOLUTION_640_1536",
  "704 x 1152":"RESOLUTION_704_1152",
  "704 x 1216":"RESOLUTION_704_1216",
  "704 x 1280":"RESOLUTION_704_1280",
  "704 x 1344":"RESOLUTION_704_1344",
  "704 x 1408":"RESOLUTION_704_1408",
  "704 x 1472":"RESOLUTION_704_1472",
  "720 x 1280":"RESOLUTION_720_1280",
  "736 x 1312":"RESOLUTION_736_1312",
  "768 x 1024":"RESOLUTION_768_1024",
  "768 x 1088":"RESOLUTION_768_1088",
  "768 x 1152":"RESOLUTION_768_1152",
  "768 x 1216":"RESOLUTION_768_1216",
  "768 x 1232":"RESOLUTION_768_1232",
  "768 x 1280":"RESOLUTION_768_1280",
  "768 x 1344":"RESOLUTION_768_1344",
  "832 x 960":"RESOLUTION_832_960",
  "832 x 1024":"RESOLUTION_832_1024",
  "832 x 1088":"RESOLUTION_832_1088",
  "832 x 1152":"RESOLUTION_832_1152",
  "832 x 1216":"RESOLUTION_832_1216",
  "832 x 1248":"RESOLUTION_832_1248",
  "864 x 1152":"RESOLUTION_864_1152",
  "896 x 960":"RESOLUTION_896_960",
  "896 x 1024":"RESOLUTION_896_1024",
  "896 x 1088":"RESOLUTION_896_1088",
  "896 x 1120":"RESOLUTION_896_1120",
  "896 x 1152":"RESOLUTION_896_1152",
  "960 x 832":"RESOLUTION_960_832",
  "960 x 896":"RESOLUTION_960_896",
  "960 x 1024":"RESOLUTION_960_1024",
  "960 x 1088":"RESOLUTION_960_1088",
  "1024 x 640":"RESOLUTION_1024_640",
  "1024 x 768":"RESOLUTION_1024_768",
  "1024 x 832":"RESOLUTION_1024_832",
  "1024 x 896":"RESOLUTION_1024_896",
  "1024 x 960":"RESOLUTION_1024_960",
  "1024 x 1024":"RESOLUTION_1024_1024",
  "1088 x 768":"RESOLUTION_1088_768",
  "1088 x 832":"RESOLUTION_1088_832",
  "1088 x 896":"RESOLUTION_1088_896",
  "1088 x 960":"RESOLUTION_1088_960",
  "1120 x 896":"RESOLUTION_1120_896",
  "1152 x 704":"RESOLUTION_1152_704",
  "1152 x 768":"RESOLUTION_1152_768",
  "1152 x 832":"RESOLUTION_1152_832",
  "1152 x 864":"RESOLUTION_1152_864",
  "1152 x 896":"RESOLUTION_1152_896",
  "1216 x 704":"RESOLUTION_1216_704",
  "1216 x 768":"RESOLUTION_1216_768",
  "1216 x 832":"RESOLUTION_1216_832",
  "1232 x 768":"RESOLUTION_1232_768",
  "1248 x 832":"RESOLUTION_1248_832",
  "1280 x 704":"RESOLUTION_1280_704",
  "1280 x 720":"RESOLUTION_1280_720",
  "1280 x 768":"RESOLUTION_1280_768",
  "1280 x 800":"RESOLUTION_1280_800",
  "1312 x 736":"RESOLUTION_1312_736",
  "1344 x 640":"RESOLUTION_1344_640",
  "1344 x 704":"RESOLUTION_1344_704",
  "1344 x 768":"RESOLUTION_1344_768",
  "1408 x 576":"RESOLUTION_1408_576",
  "1408 x 640":"RESOLUTION_1408_640",
  "1408 x 704":"RESOLUTION_1408_704",
  "1472 x 576":"RESOLUTION_1472_576",
  "1472 x 640":"RESOLUTION_1472_640",
  "1472 x 704":"RESOLUTION_1472_704",
  "1536 x 512":"RESOLUTION_1536_512",
  "1536 x 576":"RESOLUTION_1536_576",
  "1536 x 640":"RESOLUTION_1536_640",
}

V1_V2_RATIO_MAP = {
  "1:1":"ASPECT_1_1",
  "4:3":"ASPECT_4_3",
  "3:4":"ASPECT_3_4",
  "16:9":"ASPECT_16_9",
  "9:16":"ASPECT_9_16",
  "2:1":"ASPECT_2_1",
  "1:2":"ASPECT_1_2",
  "3:2":"ASPECT_3_2",
  "2:3":"ASPECT_2_3",
  "4:5":"ASPECT_4_5",
  "5:4":"ASPECT_5_4",
}

V3_RATIO_MAP = {
    "1:3":"1x3",
    "3:1":"3x1",
    "1:2":"1x2",
    "2:1":"2x1",
    "9:16":"9x16",
    "16:9":"16x9",
    "10:16":"10x16",
    "16:10":"16x10",
    "2:3":"2x3",
    "3:2":"3x2",
    "3:4":"3x4",
    "4:3":"4x3",
    "4:5":"4x5",
    "5:4":"5x4",
    "1:1":"1x1",
}

V3_RESOLUTIONS= [
    "Auto",
    "512x1536",
    "576x1408",
    "576x1472",
    "576x1536",
    "640x1344",
    "640x1408",
    "640x1472",
    "640x1536",
    "704x1152",
    "704x1216",
    "704x1280",
    "704x1344",
    "704x1408",
    "704x1472",
    "736x1312",
    "768x1088",
    "768x1216",
    "768x1280",
    "768x1344",
    "800x1280",
    "832x960",
    "832x1024",
    "832x1088",
    "832x1152",
    "832x1216",
    "832x1248",
    "864x1152",
    "896x960",
    "896x1024",
    "896x1088",
    "896x1120",
    "896x1152",
    "960x832",
    "960x896",
    "960x1024",
    "960x1088",
    "1024x832",
    "1024x896",
    "1024x960",
    "1024x1024",
    "1088x768",
    "1088x832",
    "1088x896",
    "1088x960",
    "1120x896",
    "1152x704",
    "1152x832",
    "1152x864",
    "1152x896",
    "1216x704",
    "1216x768",
    "1216x832",
    "1248x832",
    "1280x704",
    "1280x768",
    "1280x800",
    "1312x736",
    "1344x640",
    "1344x704",
    "1344x768",
    "1408x576",
    "1408x640",
    "1408x704",
    "1472x576",
    "1472x640",
    "1472x704",
    "1536x512",
    "1536x576",
    "1536x640"
]

def download_and_process_images(image_urls):
    """Helper function to download and process multiple images from URLs"""

    # Initialize list to store image tensors
    image_tensors = []

    for image_url in image_urls:
        # Using functions from apinode_utils.py to handle downloading and processing
        image_bytesio = download_url_to_bytesio(image_url)  # Download image content to BytesIO
        img_tensor = bytesio_to_image_tensor(image_bytesio, mode="RGB")  # Convert to torch.Tensor with RGB mode
        image_tensors.append(img_tensor)

    # Stack tensors to match (N, width, height, channels)
    if image_tensors:
        stacked_tensors = torch.cat(image_tensors, dim=0)
    else:
        raise Exception("No valid images were processed")

    return stacked_tensors


def display_image_urls_on_node(image_urls, node_id):
    if node_id and image_urls:
        if len(image_urls) == 1:
            PromptServer.instance.send_progress_text(
                f"Generated Image URL:\n{image_urls[0]}", node_id
            )
        else:
            urls_text = "Generated Image URLs:\n" + "\n".join(
                f"{i+1}. {url}" for i, url in enumerate(image_urls)
            )
            PromptServer.instance.send_progress_text(urls_text, node_id)


class IdeogramV1(ComfyNodeABC):
    """

    Generates images using the Ideogram V1 model.

    """

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls) -> InputTypeDict:
        return {
            "required": {
                "prompt": (
                    IO.STRING,
                    {
                        "multiline": True,
                        "default": "",
                        "tooltip": "Prompt for the image generation",
                    },
                ),
                "turbo": (
                    IO.BOOLEAN,
                    {
                        "default": False,
                        "tooltip": "Whether to use turbo mode (faster generation, potentially lower quality)",
                    }
                ),
            },
            "optional": {
                "aspect_ratio": (
                    IO.COMBO,
                    {
                        "options": list(V1_V2_RATIO_MAP.keys()),
                        "default": "1:1",
                        "tooltip": "The aspect ratio for image generation.",
                    },
                ),
                "magic_prompt_option": (
                    IO.COMBO,
                    {
                        "options": ["AUTO", "ON", "OFF"],
                        "default": "AUTO",
                        "tooltip": "Determine if MagicPrompt should be used in generation",
                    },
                ),
                "seed": (
                    IO.INT,
                    {
                        "default": 0,
                        "min": 0,
                        "max": 2147483647,
                        "step": 1,
                        "control_after_generate": True,
                        "display": "number",
                    },
                ),
                "negative_prompt": (
                    IO.STRING,
                    {
                        "multiline": True,
                        "default": "",
                        "tooltip": "Description of what to exclude from the image",
                    },
                ),
                "num_images": (
                    IO.INT,
                    {"default": 1, "min": 1, "max": 8, "step": 1, "display": "number"},
                ),
            },
            "hidden": {
                "auth_token": "AUTH_TOKEN_COMFY_ORG",
                "comfy_api_key": "API_KEY_COMFY_ORG",
                "unique_id": "UNIQUE_ID",
            },
        }

    RETURN_TYPES = (IO.IMAGE,)
    FUNCTION = "api_call"
    CATEGORY = "api node/image/Ideogram/v1"
    DESCRIPTION = cleandoc(__doc__ or "")
    API_NODE = True

    def api_call(

        self,

        prompt,

        turbo=False,

        aspect_ratio="1:1",

        magic_prompt_option="AUTO",

        seed=0,

        negative_prompt="",

        num_images=1,

        unique_id=None,

        **kwargs,

    ):
        # Determine the model based on turbo setting
        aspect_ratio = V1_V2_RATIO_MAP.get(aspect_ratio, None)
        model = "V_1_TURBO" if turbo else "V_1"

        operation = SynchronousOperation(
            endpoint=ApiEndpoint(
                path="/proxy/ideogram/generate",
                method=HttpMethod.POST,
                request_model=IdeogramGenerateRequest,
                response_model=IdeogramGenerateResponse,
            ),
            request=IdeogramGenerateRequest(
                image_request=ImageRequest(
                    prompt=prompt,
                    model=model,
                    num_images=num_images,
                    seed=seed,
                    aspect_ratio=aspect_ratio if aspect_ratio != "ASPECT_1_1" else None,
                    magic_prompt_option=(
                        magic_prompt_option if magic_prompt_option != "AUTO" else None
                    ),
                    negative_prompt=negative_prompt if negative_prompt else None,
                )
            ),
            auth_kwargs=kwargs,
        )

        response = operation.execute()

        if not response.data or len(response.data) == 0:
            raise Exception("No images were generated in the response")

        image_urls = [image_data.url for image_data in response.data if image_data.url]

        if not image_urls:
            raise Exception("No image URLs were generated in the response")

        display_image_urls_on_node(image_urls, unique_id)
        return (download_and_process_images(image_urls),)


class IdeogramV2(ComfyNodeABC):
    """

    Generates images using the Ideogram V2 model.

    """

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls) -> InputTypeDict:
        return {
            "required": {
                "prompt": (
                    IO.STRING,
                    {
                        "multiline": True,
                        "default": "",
                        "tooltip": "Prompt for the image generation",
                    },
                ),
                "turbo": (
                    IO.BOOLEAN,
                    {
                        "default": False,
                        "tooltip": "Whether to use turbo mode (faster generation, potentially lower quality)",
                    }
                ),
            },
            "optional": {
                "aspect_ratio": (
                    IO.COMBO,
                    {
                        "options": list(V1_V2_RATIO_MAP.keys()),
                        "default": "1:1",
                        "tooltip": "The aspect ratio for image generation. Ignored if resolution is not set to AUTO.",
                    },
                ),
                "resolution": (
                    IO.COMBO,
                    {
                        "options": list(V1_V1_RES_MAP.keys()),
                        "default": "Auto",
                        "tooltip": "The resolution for image generation. If not set to AUTO, this overrides the aspect_ratio setting.",
                    },
                ),
                "magic_prompt_option": (
                    IO.COMBO,
                    {
                        "options": ["AUTO", "ON", "OFF"],
                        "default": "AUTO",
                        "tooltip": "Determine if MagicPrompt should be used in generation",
                    },
                ),
                "seed": (
                    IO.INT,
                    {
                        "default": 0,
                        "min": 0,
                        "max": 2147483647,
                        "step": 1,
                        "control_after_generate": True,
                        "display": "number",
                    },
                ),
                "style_type": (
                    IO.COMBO,
                    {
                        "options": ["AUTO", "GENERAL", "REALISTIC", "DESIGN", "RENDER_3D", "ANIME"],
                        "default": "NONE",
                        "tooltip": "Style type for generation (V2 only)",
                    },
                ),
                "negative_prompt": (
                    IO.STRING,
                    {
                        "multiline": True,
                        "default": "",
                        "tooltip": "Description of what to exclude from the image",
                    },
                ),
                "num_images": (
                    IO.INT,
                    {"default": 1, "min": 1, "max": 8, "step": 1, "display": "number"},
                ),
                #"color_palette": (
                #    IO.STRING,
                #    {
                #        "multiline": False,
                #        "default": "",
                #        "tooltip": "Color palette preset name or hex colors with weights",
                #    },
                #),
            },
            "hidden": {
                "auth_token": "AUTH_TOKEN_COMFY_ORG",
                "comfy_api_key": "API_KEY_COMFY_ORG",
                "unique_id": "UNIQUE_ID",
            },
        }

    RETURN_TYPES = (IO.IMAGE,)
    FUNCTION = "api_call"
    CATEGORY = "api node/image/Ideogram/v2"
    DESCRIPTION = cleandoc(__doc__ or "")
    API_NODE = True

    def api_call(

        self,

        prompt,

        turbo=False,

        aspect_ratio="1:1",

        resolution="Auto",

        magic_prompt_option="AUTO",

        seed=0,

        style_type="NONE",

        negative_prompt="",

        num_images=1,

        color_palette="",

        unique_id=None,

        **kwargs,

    ):
        aspect_ratio = V1_V2_RATIO_MAP.get(aspect_ratio, None)
        resolution = V1_V1_RES_MAP.get(resolution, None)
        # Determine the model based on turbo setting
        model = "V_2_TURBO" if turbo else "V_2"

        # Handle resolution vs aspect_ratio logic
        # If resolution is not AUTO, it overrides aspect_ratio
        final_resolution = None
        final_aspect_ratio = None

        if resolution != "AUTO":
            final_resolution = resolution
        else:
            final_aspect_ratio = aspect_ratio if aspect_ratio != "ASPECT_1_1" else None

        operation = SynchronousOperation(
            endpoint=ApiEndpoint(
                path="/proxy/ideogram/generate",
                method=HttpMethod.POST,
                request_model=IdeogramGenerateRequest,
                response_model=IdeogramGenerateResponse,
            ),
            request=IdeogramGenerateRequest(
                image_request=ImageRequest(
                    prompt=prompt,
                    model=model,
                    num_images=num_images,
                    seed=seed,
                    aspect_ratio=final_aspect_ratio,
                    resolution=final_resolution,
                    magic_prompt_option=(
                        magic_prompt_option if magic_prompt_option != "AUTO" else None
                    ),
                    style_type=style_type if style_type != "NONE" else None,
                    negative_prompt=negative_prompt if negative_prompt else None,
                    color_palette=color_palette if color_palette else None,
                )
            ),
            auth_kwargs=kwargs,
        )

        response = operation.execute()

        if not response.data or len(response.data) == 0:
            raise Exception("No images were generated in the response")

        image_urls = [image_data.url for image_data in response.data if image_data.url]

        if not image_urls:
            raise Exception("No image URLs were generated in the response")

        display_image_urls_on_node(image_urls, unique_id)
        return (download_and_process_images(image_urls),)

class IdeogramV3(ComfyNodeABC):
    """

    Generates images using the Ideogram V3 model. Supports both regular image generation from text prompts and image editing with mask.

    """

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls) -> InputTypeDict:
        return {
            "required": {
                "prompt": (
                    IO.STRING,
                    {
                        "multiline": True,
                        "default": "",
                        "tooltip": "Prompt for the image generation or editing",
                    },
                ),
            },
            "optional": {
                "image": (
                    IO.IMAGE,
                    {
                        "default": None,
                        "tooltip": "Optional reference image for image editing.",
                    },
                ),
                "mask": (
                    IO.MASK,
                    {
                        "default": None,
                        "tooltip": "Optional mask for inpainting (white areas will be replaced)",
                    },
                ),
                "aspect_ratio": (
                    IO.COMBO,
                    {
                        "options": list(V3_RATIO_MAP.keys()),
                        "default": "1:1",
                        "tooltip": "The aspect ratio for image generation. Ignored if resolution is not set to Auto.",
                    },
                ),
                "resolution": (
                    IO.COMBO,
                    {
                        "options": V3_RESOLUTIONS,
                        "default": "Auto",
                        "tooltip": "The resolution for image generation. If not set to Auto, this overrides the aspect_ratio setting.",
                    },
                ),
                "magic_prompt_option": (
                    IO.COMBO,
                    {
                        "options": ["AUTO", "ON", "OFF"],
                        "default": "AUTO",
                        "tooltip": "Determine if MagicPrompt should be used in generation",
                    },
                ),
                "seed": (
                    IO.INT,
                    {
                        "default": 0,
                        "min": 0,
                        "max": 2147483647,
                        "step": 1,
                        "control_after_generate": True,
                        "display": "number",
                    },
                ),
                "num_images": (
                    IO.INT,
                    {"default": 1, "min": 1, "max": 8, "step": 1, "display": "number"},
                ),
                "rendering_speed": (
                    IO.COMBO,
                    {
                        "options": ["BALANCED", "TURBO", "QUALITY"],
                        "default": "BALANCED",
                        "tooltip": "Controls the trade-off between generation speed and quality",
                    },
                ),
            },
            "hidden": {
                "auth_token": "AUTH_TOKEN_COMFY_ORG",
                "comfy_api_key": "API_KEY_COMFY_ORG",
                "unique_id": "UNIQUE_ID",
            },
        }

    RETURN_TYPES = (IO.IMAGE,)
    FUNCTION = "api_call"
    CATEGORY = "api node/image/Ideogram/v3"
    DESCRIPTION = cleandoc(__doc__ or "")
    API_NODE = True

    def api_call(

        self,

        prompt,

        image=None,

        mask=None,

        resolution="Auto",

        aspect_ratio="1:1",

        magic_prompt_option="AUTO",

        seed=0,

        num_images=1,

        rendering_speed="BALANCED",

        unique_id=None,

        **kwargs,

    ):
        # Check if both image and mask are provided for editing mode
        if image is not None and mask is not None:
            # Edit mode
            path = "/proxy/ideogram/ideogram-v3/edit"

            # Process image and mask
            input_tensor = image.squeeze().cpu()
            # Resize mask to match image dimension
            mask = resize_mask_to_image(mask, image, allow_gradient=False)
            # Invert mask, as Ideogram API will edit black areas instead of white areas (opposite of convention).
            mask = 1.0 - mask

            # Validate mask dimensions match image
            if mask.shape[1:] != image.shape[1:-1]:
                raise Exception("Mask and Image must be the same size")

            # Process image
            img_np = (input_tensor.numpy() * 255).astype(np.uint8)
            img = Image.fromarray(img_np)
            img_byte_arr = io.BytesIO()
            img.save(img_byte_arr, format="PNG")
            img_byte_arr.seek(0)
            img_binary = img_byte_arr
            img_binary.name = "image.png"

            # Process mask - white areas will be replaced
            mask_np = (mask.squeeze().cpu().numpy() * 255).astype(np.uint8)
            mask_img = Image.fromarray(mask_np)
            mask_byte_arr = io.BytesIO()
            mask_img.save(mask_byte_arr, format="PNG")
            mask_byte_arr.seek(0)
            mask_binary = mask_byte_arr
            mask_binary.name = "mask.png"

            # Create edit request
            edit_request = IdeogramV3EditRequest(
                prompt=prompt,
                rendering_speed=rendering_speed,
            )

            # Add optional parameters
            if magic_prompt_option != "AUTO":
                edit_request.magic_prompt = magic_prompt_option
            if seed != 0:
                edit_request.seed = seed
            if num_images > 1:
                edit_request.num_images = num_images

            # Execute the operation for edit mode
            operation = SynchronousOperation(
                endpoint=ApiEndpoint(
                    path=path,
                    method=HttpMethod.POST,
                    request_model=IdeogramV3EditRequest,
                    response_model=IdeogramGenerateResponse,
                ),
                request=edit_request,
                files={
                    "image": img_binary,
                    "mask": mask_binary,
                },
                content_type="multipart/form-data",
                auth_kwargs=kwargs,
            )

        elif image is not None or mask is not None:
            # If only one of image or mask is provided, raise an error
            raise Exception("Ideogram V3 image editing requires both an image AND a mask")
        else:
            # Generation mode
            path = "/proxy/ideogram/ideogram-v3/generate"

            # Create generation request
            gen_request = IdeogramV3Request(
                prompt=prompt,
                rendering_speed=rendering_speed,
            )

            # Handle resolution vs aspect ratio
            if resolution != "Auto":
                gen_request.resolution = resolution
            elif aspect_ratio != "1:1":
                v3_aspect = V3_RATIO_MAP.get(aspect_ratio)
                if v3_aspect:
                    gen_request.aspect_ratio = v3_aspect

            # Add optional parameters
            if magic_prompt_option != "AUTO":
                gen_request.magic_prompt = magic_prompt_option
            if seed != 0:
                gen_request.seed = seed
            if num_images > 1:
                gen_request.num_images = num_images

            # Execute the operation for generation mode
            operation = SynchronousOperation(
                endpoint=ApiEndpoint(
                    path=path,
                    method=HttpMethod.POST,
                    request_model=IdeogramV3Request,
                    response_model=IdeogramGenerateResponse,
                ),
                request=gen_request,
                auth_kwargs=kwargs,
            )

        # Execute the operation and process response
        response = operation.execute()

        if not response.data or len(response.data) == 0:
            raise Exception("No images were generated in the response")

        image_urls = [image_data.url for image_data in response.data if image_data.url]

        if not image_urls:
            raise Exception("No image URLs were generated in the response")

        display_image_urls_on_node(image_urls, unique_id)
        return (download_and_process_images(image_urls),)


NODE_CLASS_MAPPINGS = {
    "IdeogramV1": IdeogramV1,
    "IdeogramV2": IdeogramV2,
    "IdeogramV3": IdeogramV3,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "IdeogramV1": "Ideogram V1",
    "IdeogramV2": "Ideogram V2",
    "IdeogramV3": "Ideogram V3",
}