File size: 12,643 Bytes
77f10a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
from __future__ import annotations

import av
import torchaudio
import torch
import comfy.model_management
import folder_paths
import os
import io
import json
import random
import hashlib
import node_helpers
from comfy.cli_args import args
from comfy.comfy_types import FileLocator

class EmptyLatentAudio:
    def __init__(self):
        self.device = comfy.model_management.intermediate_device()

    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1}),
                             "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}),
                             }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

    CATEGORY = "latent/audio"

    def generate(self, seconds, batch_size):
        length = round((seconds * 44100 / 2048) / 2) * 2
        latent = torch.zeros([batch_size, 64, length], device=self.device)
        return ({"samples":latent, "type": "audio"}, )

class ConditioningStableAudio:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "seconds_start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.1}),
                             "seconds_total": ("FLOAT", {"default": 47.0, "min": 0.0, "max": 1000.0, "step": 0.1}),
                             }}

    RETURN_TYPES = ("CONDITIONING","CONDITIONING")
    RETURN_NAMES = ("positive", "negative")

    FUNCTION = "append"

    CATEGORY = "conditioning"

    def append(self, positive, negative, seconds_start, seconds_total):
        positive = node_helpers.conditioning_set_values(positive, {"seconds_start": seconds_start, "seconds_total": seconds_total})
        negative = node_helpers.conditioning_set_values(negative, {"seconds_start": seconds_start, "seconds_total": seconds_total})
        return (positive, negative)

class VAEEncodeAudio:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "audio": ("AUDIO", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/audio"

    def encode(self, vae, audio):
        sample_rate = audio["sample_rate"]
        if 44100 != sample_rate:
            waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
        else:
            waveform = audio["waveform"]

        t = vae.encode(waveform.movedim(1, -1))
        return ({"samples":t}, )

class VAEDecodeAudio:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("AUDIO",)
    FUNCTION = "decode"

    CATEGORY = "latent/audio"

    def decode(self, vae, samples):
        audio = vae.decode(samples["samples"]).movedim(-1, 1)
        std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0
        std[std < 1.0] = 1.0
        audio /= std
        return ({"waveform": audio, "sample_rate": 44100}, )


def save_audio(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None, quality="128k"):

    filename_prefix += self.prefix_append
    full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
    results: list[FileLocator] = []

    # Prepare metadata dictionary
    metadata = {}
    if not args.disable_metadata:
        if prompt is not None:
            metadata["prompt"] = json.dumps(prompt)
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata[x] = json.dumps(extra_pnginfo[x])

    # Opus supported sample rates
    OPUS_RATES = [8000, 12000, 16000, 24000, 48000]

    for (batch_number, waveform) in enumerate(audio["waveform"].cpu()):
        filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
        file = f"{filename_with_batch_num}_{counter:05}_.{format}"
        output_path = os.path.join(full_output_folder, file)

        # Use original sample rate initially
        sample_rate = audio["sample_rate"]

        # Handle Opus sample rate requirements
        if format == "opus":
            if sample_rate > 48000:
                sample_rate = 48000
            elif sample_rate not in OPUS_RATES:
                # Find the next highest supported rate
                for rate in sorted(OPUS_RATES):
                    if rate > sample_rate:
                        sample_rate = rate
                        break
                if sample_rate not in OPUS_RATES:  # Fallback if still not supported
                    sample_rate = 48000

            # Resample if necessary
            if sample_rate != audio["sample_rate"]:
                waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate)

        # Create in-memory WAV buffer
        wav_buffer = io.BytesIO()
        torchaudio.save(wav_buffer, waveform, sample_rate, format="WAV")
        wav_buffer.seek(0)  # Rewind for reading

        # Use PyAV to convert and add metadata
        input_container = av.open(wav_buffer)

        # Create output with specified format
        output_buffer = io.BytesIO()
        output_container = av.open(output_buffer, mode='w', format=format)

        # Set metadata on the container
        for key, value in metadata.items():
            output_container.metadata[key] = value

        # Set up the output stream with appropriate properties
        input_container.streams.audio[0]
        if format == "opus":
            out_stream = output_container.add_stream("libopus", rate=sample_rate)
            if quality == "64k":
                out_stream.bit_rate = 64000
            elif quality == "96k":
                out_stream.bit_rate = 96000
            elif quality == "128k":
                out_stream.bit_rate = 128000
            elif quality == "192k":
                out_stream.bit_rate = 192000
            elif quality == "320k":
                out_stream.bit_rate = 320000
        elif format == "mp3":
            out_stream = output_container.add_stream("libmp3lame", rate=sample_rate)
            if quality == "V0":
                #TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool
                out_stream.codec_context.qscale = 1
            elif quality == "128k":
                out_stream.bit_rate = 128000
            elif quality == "320k":
                out_stream.bit_rate = 320000
        else: #format == "flac":
            out_stream = output_container.add_stream("flac", rate=sample_rate)


        # Copy frames from input to output
        for frame in input_container.decode(audio=0):
            frame.pts = None  # Let PyAV handle timestamps
            output_container.mux(out_stream.encode(frame))

        # Flush encoder
        output_container.mux(out_stream.encode(None))

        # Close containers
        output_container.close()
        input_container.close()

        # Write the output to file
        output_buffer.seek(0)
        with open(output_path, 'wb') as f:
            f.write(output_buffer.getbuffer())

        results.append({
            "filename": file,
            "subfolder": subfolder,
            "type": self.type
        })
        counter += 1

    return { "ui": { "audio": results } }

class SaveAudio:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()
        self.type = "output"
        self.prefix_append = ""

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "audio": ("AUDIO", ),
                            "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}),
                            },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ()
    FUNCTION = "save_flac"

    OUTPUT_NODE = True

    CATEGORY = "audio"

    def save_flac(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None):
        return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo)

class SaveAudioMP3:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()
        self.type = "output"
        self.prefix_append = ""

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "audio": ("AUDIO", ),
                            "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}),
                            "quality": (["V0", "128k", "320k"], {"default": "V0"}),
                            },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ()
    FUNCTION = "save_mp3"

    OUTPUT_NODE = True

    CATEGORY = "audio"

    def save_mp3(self, audio, filename_prefix="ComfyUI", format="mp3", prompt=None, extra_pnginfo=None, quality="128k"):
        return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality)

class SaveAudioOpus:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()
        self.type = "output"
        self.prefix_append = ""

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "audio": ("AUDIO", ),
                            "filename_prefix": ("STRING", {"default": "audio/ComfyUI"}),
                            "quality": (["64k", "96k", "128k", "192k", "320k"], {"default": "128k"}),
                            },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ()
    FUNCTION = "save_opus"

    OUTPUT_NODE = True

    CATEGORY = "audio"

    def save_opus(self, audio, filename_prefix="ComfyUI", format="opus", prompt=None, extra_pnginfo=None, quality="V3"):
        return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality)

class PreviewAudio(SaveAudio):
    def __init__(self):
        self.output_dir = folder_paths.get_temp_directory()
        self.type = "temp"
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))

    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"audio": ("AUDIO", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

class LoadAudio:
    @classmethod
    def INPUT_TYPES(s):
        input_dir = folder_paths.get_input_directory()
        files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"])
        return {"required": {"audio": (sorted(files), {"audio_upload": True})}}

    CATEGORY = "audio"

    RETURN_TYPES = ("AUDIO", )
    FUNCTION = "load"

    def load(self, audio):
        audio_path = folder_paths.get_annotated_filepath(audio)
        waveform, sample_rate = torchaudio.load(audio_path)
        audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}
        return (audio, )

    @classmethod
    def IS_CHANGED(s, audio):
        image_path = folder_paths.get_annotated_filepath(audio)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, audio):
        if not folder_paths.exists_annotated_filepath(audio):
            return "Invalid audio file: {}".format(audio)
        return True

NODE_CLASS_MAPPINGS = {
    "EmptyLatentAudio": EmptyLatentAudio,
    "VAEEncodeAudio": VAEEncodeAudio,
    "VAEDecodeAudio": VAEDecodeAudio,
    "SaveAudio": SaveAudio,
    "SaveAudioMP3": SaveAudioMP3,
    "SaveAudioOpus": SaveAudioOpus,
    "LoadAudio": LoadAudio,
    "PreviewAudio": PreviewAudio,
    "ConditioningStableAudio": ConditioningStableAudio,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "EmptyLatentAudio": "Empty Latent Audio",
    "VAEEncodeAudio": "VAE Encode Audio",
    "VAEDecodeAudio": "VAE Decode Audio",
    "PreviewAudio": "Preview Audio",
    "LoadAudio": "Load Audio",
    "SaveAudio": "Save Audio (FLAC)",
    "SaveAudioMP3": "Save Audio (MP3)",
    "SaveAudioOpus": "Save Audio (Opus)",
}