File size: 9,063 Bytes
77f10a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import nodes
import torch
import numpy as np
from einops import rearrange
import comfy.model_management



MAX_RESOLUTION = nodes.MAX_RESOLUTION

CAMERA_DICT = {
    "base_T_norm": 1.5,
    "base_angle": np.pi/3,
    "Static": {     "angle":[0., 0., 0.],   "T":[0., 0., 0.]},
    "Pan Up": {     "angle":[0., 0., 0.],   "T":[0., -1., 0.]},
    "Pan Down": {   "angle":[0., 0., 0.],   "T":[0.,1.,0.]},
    "Pan Left": {   "angle":[0., 0., 0.],   "T":[-1.,0.,0.]},
    "Pan Right": {  "angle":[0., 0., 0.],   "T": [1.,0.,0.]},
    "Zoom In": {    "angle":[0., 0., 0.],   "T": [0.,0.,2.]},
    "Zoom Out": {   "angle":[0., 0., 0.],   "T": [0.,0.,-2.]},
    "Anti Clockwise (ACW)": {        "angle": [0., 0., -1.],  "T":[0., 0., 0.]},
    "ClockWise (CW)": {         "angle": [0., 0., 1.], "T":[0., 0., 0.]},
}


def process_pose_params(cam_params, width=672, height=384, original_pose_width=1280, original_pose_height=720, device='cpu'):

    def get_relative_pose(cam_params):
        """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py

        """
        abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
        abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
        cam_to_origin = 0
        target_cam_c2w = np.array([
            [1, 0, 0, 0],
            [0, 1, 0, -cam_to_origin],
            [0, 0, 1, 0],
            [0, 0, 0, 1]
        ])
        abs2rel = target_cam_c2w @ abs_w2cs[0]
        ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
        ret_poses = np.array(ret_poses, dtype=np.float32)
        return ret_poses

    """Modified from https://github.com/hehao13/CameraCtrl/blob/main/inference.py

    """
    cam_params = [Camera(cam_param) for cam_param in cam_params]

    sample_wh_ratio = width / height
    pose_wh_ratio = original_pose_width / original_pose_height  # Assuming placeholder ratios, change as needed

    if pose_wh_ratio > sample_wh_ratio:
        resized_ori_w = height * pose_wh_ratio
        for cam_param in cam_params:
            cam_param.fx = resized_ori_w * cam_param.fx / width
    else:
        resized_ori_h = width / pose_wh_ratio
        for cam_param in cam_params:
            cam_param.fy = resized_ori_h * cam_param.fy / height

    intrinsic = np.asarray([[cam_param.fx * width,
                            cam_param.fy * height,
                            cam_param.cx * width,
                            cam_param.cy * height]
                            for cam_param in cam_params], dtype=np.float32)

    K = torch.as_tensor(intrinsic)[None]  # [1, 1, 4]
    c2ws = get_relative_pose(cam_params)  # Assuming this function is defined elsewhere
    c2ws = torch.as_tensor(c2ws)[None]  # [1, n_frame, 4, 4]
    plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous()  # V, 6, H, W
    plucker_embedding = plucker_embedding[None]
    plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0]
    return plucker_embedding

class Camera(object):
    """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py

    """
    def __init__(self, entry):
        fx, fy, cx, cy = entry[1:5]
        self.fx = fx
        self.fy = fy
        self.cx = cx
        self.cy = cy
        c2w_mat = np.array(entry[7:]).reshape(4, 4)
        self.c2w_mat = c2w_mat
        self.w2c_mat = np.linalg.inv(c2w_mat)

def ray_condition(K, c2w, H, W, device):
    """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py

    """
    # c2w: B, V, 4, 4
    # K: B, V, 4

    B = K.shape[0]

    j, i = torch.meshgrid(
        torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
        torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
        indexing='ij'
    )
    i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5  # [B, HxW]
    j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5  # [B, HxW]

    fx, fy, cx, cy = K.chunk(4, dim=-1)  # B,V, 1

    zs = torch.ones_like(i)  # [B, HxW]
    xs = (i - cx) / fx * zs
    ys = (j - cy) / fy * zs
    zs = zs.expand_as(ys)

    directions = torch.stack((xs, ys, zs), dim=-1)  # B, V, HW, 3
    directions = directions / directions.norm(dim=-1, keepdim=True)  # B, V, HW, 3

    rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2)  # B, V, 3, HW
    rays_o = c2w[..., :3, 3]  # B, V, 3
    rays_o = rays_o[:, :, None].expand_as(rays_d)  # B, V, 3, HW
    # c2w @ dirctions
    rays_dxo = torch.cross(rays_o, rays_d)
    plucker = torch.cat([rays_dxo, rays_d], dim=-1)
    plucker = plucker.reshape(B, c2w.shape[1], H, W, 6)  # B, V, H, W, 6
    # plucker = plucker.permute(0, 1, 4, 2, 3)
    return plucker

def get_camera_motion(angle, T, speed, n=81):
    def compute_R_form_rad_angle(angles):
        theta_x, theta_y, theta_z = angles
        Rx = np.array([[1, 0, 0],
                    [0, np.cos(theta_x), -np.sin(theta_x)],
                    [0, np.sin(theta_x), np.cos(theta_x)]])

        Ry = np.array([[np.cos(theta_y), 0, np.sin(theta_y)],
                    [0, 1, 0],
                    [-np.sin(theta_y), 0, np.cos(theta_y)]])

        Rz = np.array([[np.cos(theta_z), -np.sin(theta_z), 0],
                    [np.sin(theta_z), np.cos(theta_z), 0],
                    [0, 0, 1]])

        R = np.dot(Rz, np.dot(Ry, Rx))
        return R
    RT = []
    for i in range(n):
        _angle = (i/n)*speed*(CAMERA_DICT["base_angle"])*angle
        R = compute_R_form_rad_angle(_angle)
        _T=(i/n)*speed*(CAMERA_DICT["base_T_norm"])*(T.reshape(3,1))
        _RT = np.concatenate([R,_T], axis=1)
        RT.append(_RT)
    RT = np.stack(RT)
    return RT

class WanCameraEmbedding:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "camera_pose":(["Static","Pan Up","Pan Down","Pan Left","Pan Right","Zoom In","Zoom Out","Anti Clockwise (ACW)", "ClockWise (CW)"],{"default":"Static"}),
                "width": ("INT", {"default": 832, "min": 16, "max": MAX_RESOLUTION, "step": 16}),
                "height": ("INT", {"default": 480, "min": 16, "max": MAX_RESOLUTION, "step": 16}),
                "length": ("INT", {"default": 81, "min": 1, "max": MAX_RESOLUTION, "step": 4}),
            },
            "optional":{
                "speed":("FLOAT",{"default":1.0, "min": 0, "max": 10.0, "step": 0.1}),
                "fx":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.000000001}),
                "fy":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.000000001}),
                "cx":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.01}),
                "cy":("FLOAT",{"default":0.5, "min": 0, "max": 1, "step": 0.01}),
            }

        }

    RETURN_TYPES = ("WAN_CAMERA_EMBEDDING","INT","INT","INT")
    RETURN_NAMES = ("camera_embedding","width","height","length")
    FUNCTION = "run"
    CATEGORY = "camera"

    def run(self, camera_pose, width, height, length, speed=1.0,  fx=0.5, fy=0.5, cx=0.5, cy=0.5):
        """

        Use Camera trajectory as extrinsic parameters to calculate Plücker embeddings (Sitzmannet al., 2021)

        Adapted from https://github.com/aigc-apps/VideoX-Fun/blob/main/comfyui/comfyui_nodes.py

        """
        motion_list = [camera_pose]
        speed = speed
        angle = np.array(CAMERA_DICT[motion_list[0]]["angle"])
        T = np.array(CAMERA_DICT[motion_list[0]]["T"])
        RT = get_camera_motion(angle, T, speed, length)

        trajs=[]
        for cp in RT.tolist():
            traj=[fx,fy,cx,cy,0,0]
            traj.extend(cp[0])
            traj.extend(cp[1])
            traj.extend(cp[2])
            traj.extend([0,0,0,1])
            trajs.append(traj)

        cam_params = np.array([[float(x) for x in pose] for pose in trajs])
        cam_params = np.concatenate([np.zeros_like(cam_params[:, :1]), cam_params], 1)
        control_camera_video = process_pose_params(cam_params, width=width, height=height)
        control_camera_video = control_camera_video.permute([3, 0, 1, 2]).unsqueeze(0).to(device=comfy.model_management.intermediate_device())

        control_camera_video = torch.concat(
            [
                torch.repeat_interleave(control_camera_video[:, :, 0:1], repeats=4, dim=2),
                control_camera_video[:, :, 1:]
            ], dim=2
        ).transpose(1, 2)

        # Reshape, transpose, and view into desired shape
        b, f, c, h, w = control_camera_video.shape
        control_camera_video = control_camera_video.contiguous().view(b, f // 4, 4, c, h, w).transpose(2, 3)
        control_camera_video = control_camera_video.contiguous().view(b, f // 4, c * 4, h, w).transpose(1, 2)

        return (control_camera_video, width, height, length)


NODE_CLASS_MAPPINGS = {
    "WanCameraEmbedding": WanCameraEmbedding,
}