Spaces:
Running
on
Zero
Running
on
Zero
""" | |
This file is part of ComfyUI. | |
Copyright (C) 2024 Comfy | |
This program is free software: you can redistribute it and/or modify | |
it under the terms of the GNU General Public License as published by | |
the Free Software Foundation, either version 3 of the License, or | |
(at your option) any later version. | |
This program is distributed in the hope that it will be useful, | |
but WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
GNU General Public License for more details. | |
You should have received a copy of the GNU General Public License | |
along with this program. If not, see <https://www.gnu.org/licenses/>. | |
""" | |
from __future__ import annotations | |
import comfy.utils | |
import comfy.model_management | |
import comfy.model_base | |
import comfy.weight_adapter as weight_adapter | |
import logging | |
import torch | |
LORA_CLIP_MAP = { | |
"mlp.fc1": "mlp_fc1", | |
"mlp.fc2": "mlp_fc2", | |
"self_attn.k_proj": "self_attn_k_proj", | |
"self_attn.q_proj": "self_attn_q_proj", | |
"self_attn.v_proj": "self_attn_v_proj", | |
"self_attn.out_proj": "self_attn_out_proj", | |
} | |
def load_lora(lora, to_load, log_missing=True): | |
patch_dict = {} | |
loaded_keys = set() | |
for x in to_load: | |
alpha_name = "{}.alpha".format(x) | |
alpha = None | |
if alpha_name in lora.keys(): | |
alpha = lora[alpha_name].item() | |
loaded_keys.add(alpha_name) | |
dora_scale_name = "{}.dora_scale".format(x) | |
dora_scale = None | |
if dora_scale_name in lora.keys(): | |
dora_scale = lora[dora_scale_name] | |
loaded_keys.add(dora_scale_name) | |
for adapter_cls in weight_adapter.adapters: | |
adapter = adapter_cls.load(x, lora, alpha, dora_scale, loaded_keys) | |
if adapter is not None: | |
patch_dict[to_load[x]] = adapter | |
loaded_keys.update(adapter.loaded_keys) | |
continue | |
w_norm_name = "{}.w_norm".format(x) | |
b_norm_name = "{}.b_norm".format(x) | |
w_norm = lora.get(w_norm_name, None) | |
b_norm = lora.get(b_norm_name, None) | |
if w_norm is not None: | |
loaded_keys.add(w_norm_name) | |
patch_dict[to_load[x]] = ("diff", (w_norm,)) | |
if b_norm is not None: | |
loaded_keys.add(b_norm_name) | |
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,)) | |
diff_name = "{}.diff".format(x) | |
diff_weight = lora.get(diff_name, None) | |
if diff_weight is not None: | |
patch_dict[to_load[x]] = ("diff", (diff_weight,)) | |
loaded_keys.add(diff_name) | |
diff_bias_name = "{}.diff_b".format(x) | |
diff_bias = lora.get(diff_bias_name, None) | |
if diff_bias is not None: | |
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,)) | |
loaded_keys.add(diff_bias_name) | |
set_weight_name = "{}.set_weight".format(x) | |
set_weight = lora.get(set_weight_name, None) | |
if set_weight is not None: | |
patch_dict[to_load[x]] = ("set", (set_weight,)) | |
loaded_keys.add(set_weight_name) | |
if log_missing: | |
for x in lora.keys(): | |
if x not in loaded_keys: | |
logging.warning("lora key not loaded: {}".format(x)) | |
return patch_dict | |
def model_lora_keys_clip(model, key_map={}): | |
sdk = model.state_dict().keys() | |
for k in sdk: | |
if k.endswith(".weight"): | |
key_map["text_encoders.{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names | |
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}" | |
clip_l_present = False | |
clip_g_present = False | |
for b in range(32): #TODO: clean up | |
for c in LORA_CLIP_MAP: | |
k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) | |
if k in sdk: | |
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) | |
key_map[lora_key] = k | |
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) | |
key_map[lora_key] = k | |
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora | |
key_map[lora_key] = k | |
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) | |
if k in sdk: | |
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) | |
key_map[lora_key] = k | |
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base | |
key_map[lora_key] = k | |
clip_l_present = True | |
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora | |
key_map[lora_key] = k | |
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) | |
if k in sdk: | |
clip_g_present = True | |
if clip_l_present: | |
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base | |
key_map[lora_key] = k | |
lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora | |
key_map[lora_key] = k | |
else: | |
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner | |
key_map[lora_key] = k | |
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora | |
key_map[lora_key] = k | |
lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config | |
key_map[lora_key] = k | |
for k in sdk: | |
if k.endswith(".weight"): | |
if k.startswith("t5xxl.transformer."):#OneTrainer SD3 and Flux lora | |
l_key = k[len("t5xxl.transformer."):-len(".weight")] | |
t5_index = 1 | |
if clip_g_present: | |
t5_index += 1 | |
if clip_l_present: | |
t5_index += 1 | |
if t5_index == 2: | |
key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k #OneTrainer Flux | |
t5_index += 1 | |
key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k | |
elif k.startswith("hydit_clip.transformer.bert."): #HunyuanDiT Lora | |
l_key = k[len("hydit_clip.transformer.bert."):-len(".weight")] | |
lora_key = "lora_te1_{}".format(l_key.replace(".", "_")) | |
key_map[lora_key] = k | |
k = "clip_g.transformer.text_projection.weight" | |
if k in sdk: | |
key_map["lora_prior_te_text_projection"] = k #cascade lora? | |
# key_map["text_encoder.text_projection"] = k #TODO: check if other lora have the text_projection too | |
key_map["lora_te2_text_projection"] = k #OneTrainer SD3 lora | |
k = "clip_l.transformer.text_projection.weight" | |
if k in sdk: | |
key_map["lora_te1_text_projection"] = k #OneTrainer SD3 lora, not necessary but omits warning | |
return key_map | |
def model_lora_keys_unet(model, key_map={}): | |
sd = model.state_dict() | |
sdk = sd.keys() | |
for k in sdk: | |
if k.startswith("diffusion_model."): | |
if k.endswith(".weight"): | |
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_") | |
key_map["lora_unet_{}".format(key_lora)] = k | |
key_map["{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names | |
else: | |
key_map["{}".format(k)] = k #generic lora format for not .weight without any weird key names | |
diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config) | |
for k in diffusers_keys: | |
if k.endswith(".weight"): | |
unet_key = "diffusion_model.{}".format(diffusers_keys[k]) | |
key_lora = k[:-len(".weight")].replace(".", "_") | |
key_map["lora_unet_{}".format(key_lora)] = unet_key | |
key_map["lycoris_{}".format(key_lora)] = unet_key #simpletuner lycoris format | |
diffusers_lora_prefix = ["", "unet."] | |
for p in diffusers_lora_prefix: | |
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_")) | |
if diffusers_lora_key.endswith(".to_out.0"): | |
diffusers_lora_key = diffusers_lora_key[:-2] | |
key_map[diffusers_lora_key] = unet_key | |
if isinstance(model, comfy.model_base.StableCascade_C): | |
for k in sdk: | |
if k.startswith("diffusion_model."): | |
if k.endswith(".weight"): | |
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_") | |
key_map["lora_prior_unet_{}".format(key_lora)] = k | |
if isinstance(model, comfy.model_base.SD3): #Diffusers lora SD3 | |
diffusers_keys = comfy.utils.mmdit_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") | |
for k in diffusers_keys: | |
if k.endswith(".weight"): | |
to = diffusers_keys[k] | |
key_lora = "transformer.{}".format(k[:-len(".weight")]) #regular diffusers sd3 lora format | |
key_map[key_lora] = to | |
key_lora = "base_model.model.{}".format(k[:-len(".weight")]) #format for flash-sd3 lora and others? | |
key_map[key_lora] = to | |
key_lora = "lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_")) #OneTrainer lora | |
key_map[key_lora] = to | |
key_lora = "lycoris_{}".format(k[:-len(".weight")].replace(".", "_")) #simpletuner lycoris format | |
key_map[key_lora] = to | |
if isinstance(model, comfy.model_base.AuraFlow): #Diffusers lora AuraFlow | |
diffusers_keys = comfy.utils.auraflow_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") | |
for k in diffusers_keys: | |
if k.endswith(".weight"): | |
to = diffusers_keys[k] | |
key_lora = "transformer.{}".format(k[:-len(".weight")]) #simpletrainer and probably regular diffusers lora format | |
key_map[key_lora] = to | |
if isinstance(model, comfy.model_base.PixArt): | |
diffusers_keys = comfy.utils.pixart_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") | |
for k in diffusers_keys: | |
if k.endswith(".weight"): | |
to = diffusers_keys[k] | |
key_lora = "transformer.{}".format(k[:-len(".weight")]) #default format | |
key_map[key_lora] = to | |
key_lora = "base_model.model.{}".format(k[:-len(".weight")]) #diffusers training script | |
key_map[key_lora] = to | |
key_lora = "unet.base_model.model.{}".format(k[:-len(".weight")]) #old reference peft script | |
key_map[key_lora] = to | |
if isinstance(model, comfy.model_base.HunyuanDiT): | |
for k in sdk: | |
if k.startswith("diffusion_model.") and k.endswith(".weight"): | |
key_lora = k[len("diffusion_model."):-len(".weight")] | |
key_map["base_model.model.{}".format(key_lora)] = k #official hunyuan lora format | |
if isinstance(model, comfy.model_base.Flux): #Diffusers lora Flux | |
diffusers_keys = comfy.utils.flux_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") | |
for k in diffusers_keys: | |
if k.endswith(".weight"): | |
to = diffusers_keys[k] | |
key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format | |
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris | |
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer | |
if isinstance(model, comfy.model_base.GenmoMochi): | |
for k in sdk: | |
if k.startswith("diffusion_model.") and k.endswith(".weight"): #Official Mochi lora format | |
key_lora = k[len("diffusion_model."):-len(".weight")] | |
key_map["{}".format(key_lora)] = k | |
if isinstance(model, comfy.model_base.HunyuanVideo): | |
for k in sdk: | |
if k.startswith("diffusion_model.") and k.endswith(".weight"): | |
# diffusion-pipe lora format | |
key_lora = k | |
key_lora = key_lora.replace("_mod.lin.", "_mod.linear.").replace("_attn.qkv.", "_attn_qkv.").replace("_attn.proj.", "_attn_proj.") | |
key_lora = key_lora.replace("mlp.0.", "mlp.fc1.").replace("mlp.2.", "mlp.fc2.") | |
key_lora = key_lora.replace(".modulation.lin.", ".modulation.linear.") | |
key_lora = key_lora[len("diffusion_model."):-len(".weight")] | |
key_map["transformer.{}".format(key_lora)] = k | |
key_map["diffusion_model.{}".format(key_lora)] = k # Old loras | |
if isinstance(model, comfy.model_base.HiDream): | |
for k in sdk: | |
if k.startswith("diffusion_model."): | |
if k.endswith(".weight"): | |
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_") | |
key_map["lycoris_{}".format(key_lora)] = k #SimpleTuner lycoris format | |
if isinstance(model, comfy.model_base.ACEStep): | |
for k in sdk: | |
if k.startswith("diffusion_model.") and k.endswith(".weight"): #Official ACE step lora format | |
key_lora = k[len("diffusion_model."):-len(".weight")] | |
key_map["{}".format(key_lora)] = k | |
return key_map | |
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor: | |
""" | |
Pad a tensor to a new shape with zeros. | |
Args: | |
tensor (torch.Tensor): The original tensor to be padded. | |
new_shape (List[int]): The desired shape of the padded tensor. | |
Returns: | |
torch.Tensor: A new tensor padded with zeros to the specified shape. | |
Note: | |
If the new shape is smaller than the original tensor in any dimension, | |
the original tensor will be truncated in that dimension. | |
""" | |
if any([new_shape[i] < tensor.shape[i] for i in range(len(new_shape))]): | |
raise ValueError("The new shape must be larger than the original tensor in all dimensions") | |
if len(new_shape) != len(tensor.shape): | |
raise ValueError("The new shape must have the same number of dimensions as the original tensor") | |
# Create a new tensor filled with zeros | |
padded_tensor = torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) | |
# Create slicing tuples for both tensors | |
orig_slices = tuple(slice(0, dim) for dim in tensor.shape) | |
new_slices = tuple(slice(0, dim) for dim in tensor.shape) | |
# Copy the original tensor into the new tensor | |
padded_tensor[new_slices] = tensor[orig_slices] | |
return padded_tensor | |
def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, original_weights=None): | |
for p in patches: | |
strength = p[0] | |
v = p[1] | |
strength_model = p[2] | |
offset = p[3] | |
function = p[4] | |
if function is None: | |
function = lambda a: a | |
old_weight = None | |
if offset is not None: | |
old_weight = weight | |
weight = weight.narrow(offset[0], offset[1], offset[2]) | |
if strength_model != 1.0: | |
weight *= strength_model | |
if isinstance(v, list): | |
v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), ) | |
if isinstance(v, weight_adapter.WeightAdapterBase): | |
output = v.calculate_weight(weight, key, strength, strength_model, offset, function, intermediate_dtype, original_weights) | |
if output is None: | |
logging.warning("Calculate Weight Failed: {} {}".format(v.name, key)) | |
else: | |
weight = output | |
if old_weight is not None: | |
weight = old_weight | |
continue | |
if len(v) == 1: | |
patch_type = "diff" | |
elif len(v) == 2: | |
patch_type = v[0] | |
v = v[1] | |
if patch_type == "diff": | |
diff: torch.Tensor = v[0] | |
# An extra flag to pad the weight if the diff's shape is larger than the weight | |
do_pad_weight = len(v) > 1 and v[1]['pad_weight'] | |
if do_pad_weight and diff.shape != weight.shape: | |
logging.info("Pad weight {} from {} to shape: {}".format(key, weight.shape, diff.shape)) | |
weight = pad_tensor_to_shape(weight, diff.shape) | |
if strength != 0.0: | |
if diff.shape != weight.shape: | |
logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, diff.shape, weight.shape)) | |
else: | |
weight += function(strength * comfy.model_management.cast_to_device(diff, weight.device, weight.dtype)) | |
elif patch_type == "set": | |
weight.copy_(v[0]) | |
elif patch_type == "model_as_lora": | |
target_weight: torch.Tensor = v[0] | |
diff_weight = comfy.model_management.cast_to_device(target_weight, weight.device, intermediate_dtype) - \ | |
comfy.model_management.cast_to_device(original_weights[key][0][0], weight.device, intermediate_dtype) | |
weight += function(strength * comfy.model_management.cast_to_device(diff_weight, weight.device, weight.dtype)) | |
else: | |
logging.warning("patch type not recognized {} {}".format(patch_type, key)) | |
if old_weight is not None: | |
weight = old_weight | |
return weight | |