Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
from typing import Optional | |
import torch | |
import comfy.model_management | |
from .base import WeightAdapterBase, weight_decompose | |
class LoHaAdapter(WeightAdapterBase): | |
name = "loha" | |
def __init__(self, loaded_keys, weights): | |
self.loaded_keys = loaded_keys | |
self.weights = weights | |
def load( | |
cls, | |
x: str, | |
lora: dict[str, torch.Tensor], | |
alpha: float, | |
dora_scale: torch.Tensor, | |
loaded_keys: set[str] = None, | |
) -> Optional["LoHaAdapter"]: | |
if loaded_keys is None: | |
loaded_keys = set() | |
hada_w1_a_name = "{}.hada_w1_a".format(x) | |
hada_w1_b_name = "{}.hada_w1_b".format(x) | |
hada_w2_a_name = "{}.hada_w2_a".format(x) | |
hada_w2_b_name = "{}.hada_w2_b".format(x) | |
hada_t1_name = "{}.hada_t1".format(x) | |
hada_t2_name = "{}.hada_t2".format(x) | |
if hada_w1_a_name in lora.keys(): | |
hada_t1 = None | |
hada_t2 = None | |
if hada_t1_name in lora.keys(): | |
hada_t1 = lora[hada_t1_name] | |
hada_t2 = lora[hada_t2_name] | |
loaded_keys.add(hada_t1_name) | |
loaded_keys.add(hada_t2_name) | |
weights = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale) | |
loaded_keys.add(hada_w1_a_name) | |
loaded_keys.add(hada_w1_b_name) | |
loaded_keys.add(hada_w2_a_name) | |
loaded_keys.add(hada_w2_b_name) | |
return cls(loaded_keys, weights) | |
else: | |
return None | |
def calculate_weight( | |
self, | |
weight, | |
key, | |
strength, | |
strength_model, | |
offset, | |
function, | |
intermediate_dtype=torch.float32, | |
original_weight=None, | |
): | |
v = self.weights | |
w1a = v[0] | |
w1b = v[1] | |
if v[2] is not None: | |
alpha = v[2] / w1b.shape[0] | |
else: | |
alpha = 1.0 | |
w2a = v[3] | |
w2b = v[4] | |
dora_scale = v[7] | |
if v[5] is not None: #cp decomposition | |
t1 = v[5] | |
t2 = v[6] | |
m1 = torch.einsum('i j k l, j r, i p -> p r k l', | |
comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype), | |
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype), | |
comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype)) | |
m2 = torch.einsum('i j k l, j r, i p -> p r k l', | |
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype), | |
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype), | |
comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype)) | |
else: | |
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype), | |
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype)) | |
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype), | |
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype)) | |
try: | |
lora_diff = (m1 * m2).reshape(weight.shape) | |
if dora_scale is not None: | |
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function) | |
else: | |
weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) | |
except Exception as e: | |
logging.error("ERROR {} {} {}".format(self.name, key, e)) | |
return weight | |