from __future__ import annotations from enum import Enum from typing import Any, Dict, Optional from pydantic import BaseModel, Field, confloat, conint class BFLOutputFormat(str, Enum): png = 'png' jpeg = 'jpeg' class BFLFluxExpandImageRequest(BaseModel): prompt: str = Field(..., description='The description of the changes you want to make. This text guides the expansion process, allowing you to specify features, styles, or modifications for the expanded areas.') prompt_upsampling: Optional[bool] = Field( None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.' ) seed: Optional[int] = Field(None, description='The seed value for reproducibility.') top: conint(ge=0, le=2048) = Field(..., description='Number of pixels to expand at the top of the image') bottom: conint(ge=0, le=2048) = Field(..., description='Number of pixels to expand at the bottom of the image') left: conint(ge=0, le=2048) = Field(..., description='Number of pixels to expand at the left side of the image') right: conint(ge=0, le=2048) = Field(..., description='Number of pixels to expand at the right side of the image') steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process') guidance: confloat(ge=1.5, le=100) = Field(..., description='Guidance strength for the image generation process') safety_tolerance: Optional[conint(ge=0, le=6)] = Field( 6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.' ) output_format: Optional[BFLOutputFormat] = Field( BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png'] ) image: str = Field(None, description='A Base64-encoded string representing the image you wish to expand') class BFLFluxFillImageRequest(BaseModel): prompt: str = Field(..., description='The description of the changes you want to make. This text guides the expansion process, allowing you to specify features, styles, or modifications for the expanded areas.') prompt_upsampling: Optional[bool] = Field( None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.' ) seed: Optional[int] = Field(None, description='The seed value for reproducibility.') steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process') guidance: confloat(ge=1.5, le=100) = Field(..., description='Guidance strength for the image generation process') safety_tolerance: Optional[conint(ge=0, le=6)] = Field( 6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.' ) output_format: Optional[BFLOutputFormat] = Field( BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png'] ) image: str = Field(None, description='A Base64-encoded string representing the image you wish to modify. Can contain alpha mask if desired.') mask: str = Field(None, description='A Base64-encoded string representing the mask of the areas you with to modify.') class BFLFluxCannyImageRequest(BaseModel): prompt: str = Field(..., description='Text prompt for image generation') prompt_upsampling: Optional[bool] = Field( None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.' ) canny_low_threshold: Optional[int] = Field(None, description='Low threshold for Canny edge detection') canny_high_threshold: Optional[int] = Field(None, description='High threshold for Canny edge detection') seed: Optional[int] = Field(None, description='The seed value for reproducibility.') steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process') guidance: confloat(ge=1, le=100) = Field(..., description='Guidance strength for the image generation process') safety_tolerance: Optional[conint(ge=0, le=6)] = Field( 6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.' ) output_format: Optional[BFLOutputFormat] = Field( BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png'] ) control_image: Optional[str] = Field(None, description='Base64 encoded image to use as control input if no preprocessed image is provided') preprocessed_image: Optional[str] = Field(None, description='Optional pre-processed image that will bypass the control preprocessing step') class BFLFluxDepthImageRequest(BaseModel): prompt: str = Field(..., description='Text prompt for image generation') prompt_upsampling: Optional[bool] = Field( None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.' ) seed: Optional[int] = Field(None, description='The seed value for reproducibility.') steps: conint(ge=15, le=50) = Field(..., description='Number of steps for the image generation process') guidance: confloat(ge=1, le=100) = Field(..., description='Guidance strength for the image generation process') safety_tolerance: Optional[conint(ge=0, le=6)] = Field( 6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.' ) output_format: Optional[BFLOutputFormat] = Field( BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png'] ) control_image: Optional[str] = Field(None, description='Base64 encoded image to use as control input if no preprocessed image is provided') preprocessed_image: Optional[str] = Field(None, description='Optional pre-processed image that will bypass the control preprocessing step') class BFLFluxProGenerateRequest(BaseModel): prompt: str = Field(..., description='The text prompt for image generation.') prompt_upsampling: Optional[bool] = Field( None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.' ) seed: Optional[int] = Field(None, description='The seed value for reproducibility.') width: conint(ge=256, le=1440) = Field(1024, description='Width of the generated image in pixels. Must be a multiple of 32.') height: conint(ge=256, le=1440) = Field(768, description='Height of the generated image in pixels. Must be a multiple of 32.') safety_tolerance: Optional[conint(ge=0, le=6)] = Field( 6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.' ) output_format: Optional[BFLOutputFormat] = Field( BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png'] ) image_prompt: Optional[str] = Field(None, description='Optional image to remix in base64 format') # image_prompt_strength: Optional[confloat(ge=0.0, le=1.0)] = Field( # None, description='Blend between the prompt and the image prompt.' # ) class BFLFluxProUltraGenerateRequest(BaseModel): prompt: str = Field(..., description='The text prompt for image generation.') prompt_upsampling: Optional[bool] = Field( None, description='Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation.' ) seed: Optional[int] = Field(None, description='The seed value for reproducibility.') aspect_ratio: Optional[str] = Field(None, description='Aspect ratio of the image between 21:9 and 9:21.') safety_tolerance: Optional[conint(ge=0, le=6)] = Field( 6, description='Tolerance level for input and output moderation. Between 0 and 6, 0 being most strict, 6 being least strict. Defaults to 2.' ) output_format: Optional[BFLOutputFormat] = Field( BFLOutputFormat.png, description="Output format for the generated image. Can be 'jpeg' or 'png'.", examples=['png'] ) raw: Optional[bool] = Field(None, description='Generate less processed, more natural-looking images.') image_prompt: Optional[str] = Field(None, description='Optional image to remix in base64 format') image_prompt_strength: Optional[confloat(ge=0.0, le=1.0)] = Field( None, description='Blend between the prompt and the image prompt.' ) class BFLFluxProGenerateResponse(BaseModel): id: str = Field(..., description='The unique identifier for the generation task.') polling_url: str = Field(..., description='URL to poll for the generation result.') class BFLStatus(str, Enum): task_not_found = "Task not found" pending = "Pending" request_moderated = "Request Moderated" content_moderated = "Content Moderated" ready = "Ready" error = "Error" class BFLFluxProStatusResponse(BaseModel): id: str = Field(..., description="The unique identifier for the generation task.") status: BFLStatus = Field(..., description="The status of the task.") result: Optional[Dict[str, Any]] = Field( None, description="The result of the task (null if not completed)." ) progress: confloat(ge=0.0, le=1.0) = Field( ..., description="The progress of the task (0.0 to 1.0)." ) details: Optional[Dict[str, Any]] = Field( None, description="Additional details about the task (null if not available)." )