from __future__ import annotations import torch from enum import Enum from typing import Optional, Union from pydantic import BaseModel, Field, confloat class LumaIO: LUMA_REF = "LUMA_REF" LUMA_CONCEPTS = "LUMA_CONCEPTS" class LumaReference: def __init__(self, image: torch.Tensor, weight: float): self.image = image self.weight = weight def create_api_model(self, download_url: str): return LumaImageRef(url=download_url, weight=self.weight) class LumaReferenceChain: def __init__(self, first_ref: LumaReference=None): self.refs: list[LumaReference] = [] if first_ref: self.refs.append(first_ref) def add(self, luma_ref: LumaReference=None): self.refs.append(luma_ref) def create_api_model(self, download_urls: list[str], max_refs=4): if len(self.refs) == 0: return None api_refs: list[LumaImageRef] = [] for ref, url in zip(self.refs, download_urls): api_ref = LumaImageRef(url=url, weight=ref.weight) api_refs.append(api_ref) return api_refs def clone(self): c = LumaReferenceChain() for ref in self.refs: c.add(ref) return c class LumaConcept: def __init__(self, key: str): self.key = key class LumaConceptChain: def __init__(self, str_list: list[str] = None): self.concepts: list[LumaConcept] = [] if str_list is not None: for c in str_list: if c != "None": self.add(LumaConcept(key=c)) def add(self, concept: LumaConcept): self.concepts.append(concept) def create_api_model(self): if len(self.concepts) == 0: return None api_concepts: list[LumaConceptObject] = [] for concept in self.concepts: if concept.key == "None": continue api_concepts.append(LumaConceptObject(key=concept.key)) if len(api_concepts) == 0: return None return api_concepts def clone(self): c = LumaConceptChain() for concept in self.concepts: c.add(concept) return c def clone_and_merge(self, other: LumaConceptChain): c = self.clone() for concept in other.concepts: c.add(concept) return c def get_luma_concepts(include_none=False): concepts = [] if include_none: concepts.append("None") return concepts + [ "truck_left", "pan_right", "pedestal_down", "low_angle", "pedestal_up", "selfie", "pan_left", "roll_right", "zoom_in", "over_the_shoulder", "orbit_right", "orbit_left", "static", "tiny_planet", "high_angle", "bolt_cam", "dolly_zoom", "overhead", "zoom_out", "handheld", "roll_left", "pov", "aerial_drone", "push_in", "crane_down", "truck_right", "tilt_down", "elevator_doors", "tilt_up", "ground_level", "pull_out", "aerial", "crane_up", "eye_level" ] class LumaImageModel(str, Enum): photon_1 = "photon-1" photon_flash_1 = "photon-flash-1" class LumaVideoModel(str, Enum): ray_2 = "ray-2" ray_flash_2 = "ray-flash-2" ray_1_6 = "ray-1-6" class LumaAspectRatio(str, Enum): ratio_1_1 = "1:1" ratio_16_9 = "16:9" ratio_9_16 = "9:16" ratio_4_3 = "4:3" ratio_3_4 = "3:4" ratio_21_9 = "21:9" ratio_9_21 = "9:21" class LumaVideoOutputResolution(str, Enum): res_540p = "540p" res_720p = "720p" res_1080p = "1080p" res_4k = "4k" class LumaVideoModelOutputDuration(str, Enum): dur_5s = "5s" dur_9s = "9s" class LumaGenerationType(str, Enum): video = 'video' image = 'image' class LumaState(str, Enum): queued = "queued" dreaming = "dreaming" completed = "completed" failed = "failed" class LumaAssets(BaseModel): video: Optional[str] = Field(None, description='The URL of the video') image: Optional[str] = Field(None, description='The URL of the image') progress_video: Optional[str] = Field(None, description='The URL of the progress video') class LumaImageRef(BaseModel): '''Used for image gen''' url: str = Field(..., description='The URL of the image reference') weight: confloat(ge=0.0, le=1.0) = Field(..., description='The weight of the image reference') class LumaImageReference(BaseModel): '''Used for video gen''' type: Optional[str] = Field('image', description='Input type, defaults to image') url: str = Field(..., description='The URL of the image') class LumaModifyImageRef(BaseModel): url: str = Field(..., description='The URL of the image reference') weight: confloat(ge=0.0, le=1.0) = Field(..., description='The weight of the image reference') class LumaCharacterRef(BaseModel): identity0: LumaImageIdentity = Field(..., description='The image identity object') class LumaImageIdentity(BaseModel): images: list[str] = Field(..., description='The URLs of the image identity') class LumaGenerationReference(BaseModel): type: str = Field('generation', description='Input type, defaults to generation') id: str = Field(..., description='The ID of the generation') class LumaKeyframes(BaseModel): frame0: Optional[Union[LumaImageReference, LumaGenerationReference]] = Field(None, description='') frame1: Optional[Union[LumaImageReference, LumaGenerationReference]] = Field(None, description='') class LumaConceptObject(BaseModel): key: str = Field(..., description='Camera Concept name') class LumaImageGenerationRequest(BaseModel): prompt: str = Field(..., description='The prompt of the generation') model: LumaImageModel = Field(LumaImageModel.photon_1, description='The image model used for the generation') aspect_ratio: Optional[LumaAspectRatio] = Field(LumaAspectRatio.ratio_16_9, description='The aspect ratio of the generation') image_ref: Optional[list[LumaImageRef]] = Field(None, description='List of image reference objects') style_ref: Optional[list[LumaImageRef]] = Field(None, description='List of style reference objects') character_ref: Optional[LumaCharacterRef] = Field(None, description='The image identity object') modify_image_ref: Optional[LumaModifyImageRef] = Field(None, description='The modify image reference object') class LumaGenerationRequest(BaseModel): prompt: str = Field(..., description='The prompt of the generation') model: LumaVideoModel = Field(LumaVideoModel.ray_2, description='The video model used for the generation') duration: Optional[LumaVideoModelOutputDuration] = Field(None, description='The duration of the generation') aspect_ratio: Optional[LumaAspectRatio] = Field(None, description='The aspect ratio of the generation') resolution: Optional[LumaVideoOutputResolution] = Field(None, description='The resolution of the generation') loop: Optional[bool] = Field(None, description='Whether to loop the video') keyframes: Optional[LumaKeyframes] = Field(None, description='The keyframes of the generation') concepts: Optional[list[LumaConceptObject]] = Field(None, description='Camera Concepts to apply to generation') class LumaGeneration(BaseModel): id: str = Field(..., description='The ID of the generation') generation_type: LumaGenerationType = Field(..., description='Generation type, image or video') state: LumaState = Field(..., description='The state of the generation') failure_reason: Optional[str] = Field(None, description='The reason for the state of the generation') created_at: str = Field(..., description='The date and time when the generation was created') assets: Optional[LumaAssets] = Field(None, description='The assets of the generation') model: str = Field(..., description='The model used for the generation') request: Union[LumaGenerationRequest, LumaImageGenerationRequest] = Field(..., description="The request used for the generation")