Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,7 +15,8 @@ from pytorch_lightning import seed_everything
|
|
| 15 |
from omegaconf import OmegaConf
|
| 16 |
from einops import rearrange, repeat
|
| 17 |
from tqdm import tqdm
|
| 18 |
-
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
|
|
|
| 19 |
import gradio as gr
|
| 20 |
import shutil
|
| 21 |
import tempfile
|
|
@@ -32,6 +33,8 @@ from src.utils.camera_util import (
|
|
| 32 |
from src.utils.mesh_util import save_obj, save_glb
|
| 33 |
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
|
| 34 |
|
|
|
|
|
|
|
| 35 |
# Set up cache path
|
| 36 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
| 37 |
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
|
@@ -73,9 +76,29 @@ else:
|
|
| 73 |
|
| 74 |
|
| 75 |
device = torch.device('cuda')
|
| 76 |
-
|
|
|
|
|
|
|
| 77 |
base_model = "black-forest-labs/FLUX.1-dev"
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
# Load and fuse LoRA BEFORE quantizing
|
| 81 |
print('Loading and fusing lora, please wait...')
|
|
@@ -83,16 +106,7 @@ lora_path = hf_hub_download("gokaygokay/Flux-Game-Assets-LoRA-v2", "game_asst.sa
|
|
| 83 |
pipe.load_lora_weights(lora_path)
|
| 84 |
pipe.fuse_lora(lora_scale=1.0)
|
| 85 |
pipe.unload_lora_weights()
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
# Now quantize after LoRA is fused
|
| 89 |
-
print('Quantizing, please wait...')
|
| 90 |
-
# Try qint8 if qfloat8 produces invalid values
|
| 91 |
-
quantize(pipe.transformer, qfloat8) # Consider changing to qint8 if you get invalid values
|
| 92 |
-
freeze(pipe.transformer)
|
| 93 |
-
print('Model quantized!')
|
| 94 |
-
pipe.to(device)
|
| 95 |
-
|
| 96 |
|
| 97 |
# Load 3D generation models
|
| 98 |
config_path = 'configs/instant-mesh-large.yaml'
|
|
|
|
| 15 |
from omegaconf import OmegaConf
|
| 16 |
from einops import rearrange, repeat
|
| 17 |
from tqdm import tqdm
|
| 18 |
+
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
|
| 19 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
| 20 |
import gradio as gr
|
| 21 |
import shutil
|
| 22 |
import tempfile
|
|
|
|
| 33 |
from src.utils.mesh_util import save_obj, save_glb
|
| 34 |
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
|
| 35 |
|
| 36 |
+
from transformer_flux import FluxTransformer2DModel
|
| 37 |
+
|
| 38 |
# Set up cache path
|
| 39 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
| 40 |
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
|
|
|
| 76 |
|
| 77 |
|
| 78 |
device = torch.device('cuda')
|
| 79 |
+
# Initialize the base model
|
| 80 |
+
dtype = torch.bfloat16
|
| 81 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 82 |
base_model = "black-forest-labs/FLUX.1-dev"
|
| 83 |
+
|
| 84 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
| 85 |
+
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype, token=huggingface_token).to(device)
|
| 86 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1, token=huggingface_token).to(device)
|
| 87 |
+
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
| 88 |
+
base_model,
|
| 89 |
+
vae=good_vae,
|
| 90 |
+
transformer=pipe.transformer,
|
| 91 |
+
text_encoder=pipe.text_encoder,
|
| 92 |
+
tokenizer=pipe.tokenizer,
|
| 93 |
+
text_encoder_2=pipe.text_encoder_2,
|
| 94 |
+
tokenizer_2=pipe.tokenizer_2,
|
| 95 |
+
torch_dtype=dtype,
|
| 96 |
+
token=huggingface_token
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
MAX_SEED = 2**32 - 1
|
| 100 |
+
|
| 101 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 102 |
|
| 103 |
# Load and fuse LoRA BEFORE quantizing
|
| 104 |
print('Loading and fusing lora, please wait...')
|
|
|
|
| 106 |
pipe.load_lora_weights(lora_path)
|
| 107 |
pipe.fuse_lora(lora_scale=1.0)
|
| 108 |
pipe.unload_lora_weights()
|
| 109 |
+
pipe.transformer.to(device, dtype=torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
# Load 3D generation models
|
| 112 |
config_path = 'configs/instant-mesh-large.yaml'
|