Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@ import requests
|
|
| 5 |
import io
|
| 6 |
from PIL import Image
|
| 7 |
import os
|
|
|
|
| 8 |
|
| 9 |
# Set up your OpenAI API key (make sure it's stored as an environment variable)
|
| 10 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
@@ -19,7 +20,7 @@ tokenizer = MBart50Tokenizer.from_pretrained(model_name)
|
|
| 19 |
model = MBartForConditionalGeneration.from_pretrained(model_name)
|
| 20 |
|
| 21 |
# Use the Hugging Face API key from environment variables for text-to-image model
|
| 22 |
-
hf_api_key = os.getenv("
|
| 23 |
if hf_api_key is None:
|
| 24 |
raise ValueError("Hugging Face API key not found! Please set 'hf_token' environment variable.")
|
| 25 |
else:
|
|
@@ -30,6 +31,7 @@ API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
|
|
| 30 |
# Define the OpenAI GPT-3 text generation function with error handling
|
| 31 |
def generate_with_gpt3(prompt, max_tokens=150, temperature=0.7):
|
| 32 |
try:
|
|
|
|
| 33 |
response = openai.Completion.create(
|
| 34 |
engine="text-davinci-003", # Use "text-davinci-003" for high-quality outputs
|
| 35 |
prompt=prompt,
|
|
@@ -39,39 +41,53 @@ def generate_with_gpt3(prompt, max_tokens=150, temperature=0.7):
|
|
| 39 |
frequency_penalty=0.0,
|
| 40 |
presence_penalty=0.0
|
| 41 |
)
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
except Exception as e:
|
| 44 |
print(f"OpenAI API Error: {e}")
|
| 45 |
return "Error generating text with GPT-3. Check the OpenAI API settings."
|
| 46 |
|
| 47 |
# Define the translation, GPT-3 text generation, and image generation function
|
| 48 |
def translate_and_generate_image(tamil_text):
|
|
|
|
| 49 |
try:
|
| 50 |
-
|
| 51 |
tokenizer.src_lang = "ta_IN"
|
| 52 |
inputs = tokenizer(tamil_text, return_tensors="pt")
|
| 53 |
translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
|
| 54 |
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
|
|
|
| 55 |
except Exception as e:
|
| 56 |
return "Error during translation: " + str(e), "", None
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
try:
|
| 59 |
-
|
| 60 |
prompt = f"Create a detailed and creative description based on the following text: {translated_text}"
|
| 61 |
generated_text = generate_with_gpt3(prompt, max_tokens=150, temperature=0.7)
|
|
|
|
| 62 |
except Exception as e:
|
| 63 |
return translated_text, f"Error during text generation: {e}", None
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
try:
|
| 66 |
-
|
| 67 |
def query(payload):
|
| 68 |
response = requests.post(API_URL, headers=headers, json=payload)
|
| 69 |
response.raise_for_status() # Raise error if request fails
|
| 70 |
return response.content
|
| 71 |
|
| 72 |
-
# Generate image using the
|
| 73 |
image_bytes = query({"inputs": generated_text})
|
| 74 |
image = Image.open(io.BytesIO(image_bytes))
|
|
|
|
| 75 |
except Exception as e:
|
| 76 |
return translated_text, generated_text, f"Error during image generation: {e}"
|
| 77 |
|
|
|
|
| 5 |
import io
|
| 6 |
from PIL import Image
|
| 7 |
import os
|
| 8 |
+
import time # Importing time to add delays for sequential execution
|
| 9 |
|
| 10 |
# Set up your OpenAI API key (make sure it's stored as an environment variable)
|
| 11 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
| 20 |
model = MBartForConditionalGeneration.from_pretrained(model_name)
|
| 21 |
|
| 22 |
# Use the Hugging Face API key from environment variables for text-to-image model
|
| 23 |
+
hf_api_key = os.getenv("hf_token")
|
| 24 |
if hf_api_key is None:
|
| 25 |
raise ValueError("Hugging Face API key not found! Please set 'hf_token' environment variable.")
|
| 26 |
else:
|
|
|
|
| 31 |
# Define the OpenAI GPT-3 text generation function with error handling
|
| 32 |
def generate_with_gpt3(prompt, max_tokens=150, temperature=0.7):
|
| 33 |
try:
|
| 34 |
+
print("Generating text with GPT-3...")
|
| 35 |
response = openai.Completion.create(
|
| 36 |
engine="text-davinci-003", # Use "text-davinci-003" for high-quality outputs
|
| 37 |
prompt=prompt,
|
|
|
|
| 41 |
frequency_penalty=0.0,
|
| 42 |
presence_penalty=0.0
|
| 43 |
)
|
| 44 |
+
generated_text = response.choices[0].text.strip()
|
| 45 |
+
print("Text generation completed.")
|
| 46 |
+
return generated_text
|
| 47 |
except Exception as e:
|
| 48 |
print(f"OpenAI API Error: {e}")
|
| 49 |
return "Error generating text with GPT-3. Check the OpenAI API settings."
|
| 50 |
|
| 51 |
# Define the translation, GPT-3 text generation, and image generation function
|
| 52 |
def translate_and_generate_image(tamil_text):
|
| 53 |
+
# Step 1: Translate Tamil text to English using mbart-large-50
|
| 54 |
try:
|
| 55 |
+
print("Translating Tamil text to English...")
|
| 56 |
tokenizer.src_lang = "ta_IN"
|
| 57 |
inputs = tokenizer(tamil_text, return_tensors="pt")
|
| 58 |
translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
|
| 59 |
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
| 60 |
+
print(f"Translation completed: {translated_text}")
|
| 61 |
except Exception as e:
|
| 62 |
return "Error during translation: " + str(e), "", None
|
| 63 |
|
| 64 |
+
# Ensure sequential flow by waiting before moving to the next step
|
| 65 |
+
time.sleep(1) # Optional: Add a small delay to ensure proper execution order
|
| 66 |
+
|
| 67 |
+
# Step 2: Generate high-quality descriptive text using OpenAI's GPT-3
|
| 68 |
try:
|
| 69 |
+
print("Generating descriptive text from translated English text...")
|
| 70 |
prompt = f"Create a detailed and creative description based on the following text: {translated_text}"
|
| 71 |
generated_text = generate_with_gpt3(prompt, max_tokens=150, temperature=0.7)
|
| 72 |
+
print(f"Text generation completed: {generated_text}")
|
| 73 |
except Exception as e:
|
| 74 |
return translated_text, f"Error during text generation: {e}", None
|
| 75 |
|
| 76 |
+
# Ensure sequential flow by waiting before moving to the next step
|
| 77 |
+
time.sleep(1) # Optional: Add a small delay to ensure proper execution order
|
| 78 |
+
|
| 79 |
+
# Step 3: Use the generated English text to create an image
|
| 80 |
try:
|
| 81 |
+
print("Generating image from the generated descriptive text...")
|
| 82 |
def query(payload):
|
| 83 |
response = requests.post(API_URL, headers=headers, json=payload)
|
| 84 |
response.raise_for_status() # Raise error if request fails
|
| 85 |
return response.content
|
| 86 |
|
| 87 |
+
# Generate image using the descriptive text
|
| 88 |
image_bytes = query({"inputs": generated_text})
|
| 89 |
image = Image.open(io.BytesIO(image_bytes))
|
| 90 |
+
print("Image generation completed.")
|
| 91 |
except Exception as e:
|
| 92 |
return translated_text, generated_text, f"Error during image generation: {e}"
|
| 93 |
|