Spaces:
Sleeping
Sleeping
File size: 23,535 Bytes
ea1186f a7e79b2 ea1186f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
import gradio as gr
import argparse
def num_floating_point_operations(args):
def calculate_layer_counts():
"""Calculate the number of attention, Mamba, and MLP layers."""
if args.hybrid_override_pattern:
counts = {"M": 0, "*": 0, "-": 0}
for layer_type in args.hybrid_override_pattern:
if layer_type in counts:
counts[layer_type] += 1
return counts["*"], counts["M"], counts["-"]
else:
num_attn_layers = round(args.num_layers * args.hybrid_attention_ratio)
num_mlp_layers = round(args.num_layers * args.hybrid_mlp_ratio)
num_mamba_layers = args.num_layers - num_attn_layers - num_mlp_layers
return num_attn_layers, num_mamba_layers, num_mlp_layers
def mlp_layer_flops(batch_size, seq_len, hidden_size, expansion=4.0, swiglu=False):
"""Calculate FLOPs for an MLP layer."""
scale_factor = 3.0 / 2.0 if swiglu else 1.0
return 4 * expansion * scale_factor * batch_size * seq_len * hidden_size**2
def attn_layer_flops(
batch_size,
seq_len,
hidden_size,
num_heads,
gqa=True,
gqa_groups=8,
kv_channels=None,
):
"""Calculate FLOPs for an attention layer."""
p = (kv_channels * num_heads / hidden_size) if kv_channels else 1
g = gqa_groups if gqa else num_heads
return (
4
* batch_size
* seq_len
* hidden_size
* p
* (hidden_size + (hidden_size * (g / num_heads)) + (seq_len / 2))
)
def mamba_layer_flops(
batch_size, seq_len, hidden_size, state_dim=16, head_dim=64, num_groups=1
):
"""Calculate FLOPs for a Mamba layer."""
# Note (rwaleffe): flops estimate for scan should be updated based on new SSD kernels,
# but small percent of overall layer flops
d_in = 2 * hidden_size
nheads = d_in // head_dim
return (
(
2
* batch_size
* seq_len
* hidden_size
* (2 * d_in + 2 * num_groups * state_dim + nheads)
) # in_proj
+ (7 * batch_size * seq_len * d_in * state_dim) # scan
+ (2 * batch_size * seq_len * d_in * hidden_size) # out_proj
)
def hybrid_flops(
batch_size,
seq_len,
hidden_size,
num_attn_layers,
num_mamba_layers,
num_mlp_layers,
mamba_state_dim=128,
mamba_head_dim=64,
mamba_num_groups=8,
num_attn_heads=32,
gqa=True,
gqa_groups=8,
kv_channels=None,
mlp_expansion=4.0,
swiglu=False,
vocab_size=256000,
):
"""Calculate total FLOPs for the hybrid model."""
flops_fwd = (
num_attn_layers
* attn_layer_flops(
batch_size,
seq_len,
hidden_size,
num_attn_heads,
gqa,
gqa_groups,
kv_channels,
)
+ num_mlp_layers
* mlp_layer_flops(batch_size, seq_len, hidden_size, mlp_expansion, swiglu)
+ num_mamba_layers
* mamba_layer_flops(
batch_size,
seq_len,
hidden_size,
mamba_state_dim,
mamba_head_dim,
mamba_num_groups,
)
+ (
2 * batch_size * seq_len * hidden_size * vocab_size
) # logits computation
)
return flops_fwd * 3
def transformer_flops():
"""Calculate FLOPs for a standard Transformer model."""
# TODO(helenn/dnarayanan): Refactor this to reuse the helper methods.
# Attention projection size.
query_projection_size = args.kv_channels * args.num_attention_heads
query_projection_to_hidden_size_ratio = query_projection_size / args.hidden_size
# Group Query Attention.
if not args.group_query_attention:
args.num_query_groups = args.num_attention_heads
# MoE.
if args.num_experts is None:
# Every Transformer MLP is dense.
num_dense_layers = args.num_layers
num_moe_layers = 0
num_experts_routed_to = 0
last_layer_is_moe = 0
else:
# Calculate number of dense and MoE Transformer MLPs.
if isinstance(args.moe_layer_freq, int):
moe_layer_pattern = [
1 if (i % args.moe_layer_freq == 0) else 0
for i in range(args.num_layers)
]
elif isinstance(args.moe_layer_freq, list):
moe_layer_pattern = args.moe_layer_freq
else:
raise RuntimeError("Illegal --moe-layer-freq argument provided!")
assert len(moe_layer_pattern) == args.num_layers, (
f"Invalid length of moe_layer_pattern: {len(moe_layer_pattern)}, "
f"expected {args.num_layers}, "
f"current moe layer pattern: {args.moe_layer_freq}"
)
num_moe_layers = sum(
moe_layer_pattern
) # Number of 1s in `moe_layer_pattern`.
num_dense_layers = args.num_layers - num_moe_layers
num_experts_routed_to = args.moe_router_topk
last_layer_is_moe = moe_layer_pattern[-1]
if args.mtp_num_layers is not None:
mtp_num_layers = args.mtp_num_layers
num_moe_layers += last_layer_is_moe * mtp_num_layers
num_dense_layers += (1 - last_layer_is_moe) * mtp_num_layers
num_layers = args.num_layers + mtp_num_layers
else:
mtp_num_layers = 0
num_layers = args.num_layers
moe_ffn_hidden_size = (
args.moe_ffn_hidden_size
if args.moe_ffn_hidden_size is not None
else args.ffn_hidden_size
)
shared_expert_ffn_hidden_size = (
0
if args.moe_shared_expert_intermediate_size is None
else args.moe_shared_expert_intermediate_size
)
# SwiGLU.
gated_linear_multiplier = 3 / 2 if args.swiglu else 1
# The 12x term below comes from the following factors; for more details, see
# "APPENDIX: FLOATING-POINT OPERATIONS" in https://arxiv.org/abs/2104.04473.
# - 3x: Each GEMM in the model needs to be performed 3 times (forward pass,
# backward wgrad [weight gradient], backward dgrad [data gradient]).
# - 2x: GEMMs of a particular size are stacked twice in the standard Transformer model
# architectures implemented in this codebase (e.g., h->ffn_h GEMM and ffn_h->h GEMM
# in MLP layer).
# - 2x: A GEMM of a m*n tensor with a n*k tensor requires 2mnk floating-point operations.
expansion_factor = 3 * 2 * 2
if args.multi_latent_attention:
assert not args.group_query_attention
"""
Basic arithmetic
let B is batch size, s is seq_len, h is embedding dim,
for one self_attnetion block (prenorm is not included)
qkv projection: 6Bsh^2
attn: 2Bs^2h
attn over value: 2Bs^2h
oproj: 2Bsh^2
references
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2205.05198
"""
## MLA
if args.q_lora_rank is None:
q_term = (
args.hidden_size
* args.num_attention_heads
* (args.qk_head_dim + args.qk_pos_emb_head_dim)
)
else:
q_term = args.q_lora_rank * (
args.hidden_size
+ args.num_attention_heads
* (args.qk_head_dim + args.qk_pos_emb_head_dim)
+ 1
)
self_attn_term = (
3
* 2 # fwd(1) + bwd(2) *FMA
* num_layers
* (
## q lora + rope + q norm
q_term
## kv lora + rope + kv norm
+ args.kv_lora_rank
* (
args.hidden_size
+ args.num_attention_heads
* (args.qk_head_dim + args.v_head_dim)
+ 1
)
+ args.hidden_size * args.qk_pos_emb_head_dim
## o proj
+ (args.num_attention_heads * args.v_head_dim) * args.hidden_size
## core attn
+ args.seq_length
* (
args.num_attention_heads
* (args.qk_head_dim + args.qk_pos_emb_head_dim)
)
/ 2
+ args.seq_length * args.num_attention_heads * args.v_head_dim / 2
)
)
else:
## MHA or GQA
self_attn_term = (
expansion_factor
* num_layers
* args.hidden_size
* args.hidden_size
* (
(
1
+ (args.num_query_groups / args.num_attention_heads)
# # Only half of the attention matrix is non-zero and needs to be multiplied with V.
+ (args.seq_length / args.hidden_size / 2)
)
* query_projection_to_hidden_size_ratio
)
)
total_floating_point_operations = (
args.batch_size
* args.seq_length
* (
# MLP
expansion_factor
* num_layers
* args.hidden_size
* (
# dense layer (deepseek v2, v3 style)
(args.ffn_hidden_size * gated_linear_multiplier)
* (num_dense_layers / num_layers)
# routed experts
+ (
moe_ffn_hidden_size
* num_experts_routed_to
* gated_linear_multiplier
)
* (num_moe_layers / num_layers)
# Shared Experts.
+ (shared_expert_ffn_hidden_size * gated_linear_multiplier)
* (num_moe_layers / num_layers)
)
# Self Attention
+ self_attn_term
# MTP norms and proj
+ 3
* 2
* mtp_num_layers
* (
# MTP eh norm + final nrom
3 * args.hidden_size
# MTH eh proj
+ 2 * args.hidden_size * args.hidden_size
)
# Logit.
+ 3
* 2
* args.hidden_size
* args.padded_vocab_size
* (mtp_num_layers + 1)
)
)
return total_floating_point_operations
# Main entrypoint for FLOPs calculation.
if args.is_hybrid_model:
# Calculate the number of each type of layer.
num_attn_layers, num_mamba_layers, num_mlp_layers = calculate_layer_counts()
# Compute hybrid model FLOPs.
return hybrid_flops(
batch_size=args.batch_size,
seq_len=args.seq_length,
hidden_size=args.hidden_size,
num_attn_layers=num_attn_layers,
num_mamba_layers=num_mamba_layers,
num_mlp_layers=num_mlp_layers,
mamba_state_dim=args.mamba_state_dim,
mamba_head_dim=args.mamba_head_dim,
mamba_num_groups=args.mamba_num_groups,
num_attn_heads=args.num_attention_heads,
gqa=args.group_query_attention,
gqa_groups=args.num_query_groups,
kv_channels=args.kv_channels,
mlp_expansion=args.ffn_hidden_size / args.hidden_size,
swiglu=args.swiglu,
vocab_size=args.padded_vocab_size,
)
else:
# Compute standard Transformer model FLOPs.
return transformer_flops()
def calculate_flops(args):
model_flops = num_floating_point_operations(args)
flops_per_token = model_flops / (args.batch_size * args.seq_length)
print(f"FLOPs Per Iteration: {model_flops}\nFLOPs Per Token: {flops_per_token}")
return model_flops
def calculate_mfu(model_flops, *, iter_elapsed_time, num_p800_cards):
assert (
model_flops and iter_elapsed_time and num_p800_cards
), "Iter elapsed time and P800 cards must be provided"
mfu = model_flops / (iter_elapsed_time * num_p800_cards * 3.5e14)
print(f"MFU P800 bf16: {mfu:.2%}")
def calculate_mfu_web( is_hybrid_model, group_query_attention, swiglu, num_layers, hidden_size,
ffn_hidden_size, padded_vocab_size, num_attention_heads, kv_channels,
num_experts, moe_layer_freq, moe_router_topk, moe_ffn_hidden_size, moe_shared_expert_intermediate_size,
multi_latent_attention, q_lora_rank, kv_lora_rank, qk_head_dim, v_head_dim, qk_pos_emb_head_dim,
mtp_num_layers, seq_length, batch_size, iter_elapsed_time, num_p800_cards
):
is_hybrid_model = True if is_hybrid_model == "True" else False
group_query_attention = True if group_query_attention == "True" else False
swiglu = True if swiglu == "True" else False
multi_latent_attention = True if multi_latent_attention == "True" else False
'''
为了直接调用calculate_flops(args)接口,这里将参数直接打包
'''
class parameter:
def __init__(self,
is_hybrid_model, group_query_attention, swiglu, num_layers, hidden_size,
ffn_hidden_size, padded_vocab_size, num_attention_heads, kv_channels,
num_experts, moe_layer_freq, moe_router_topk, moe_ffn_hidden_size, moe_shared_expert_intermediate_size,
multi_latent_attention, q_lora_rank, kv_lora_rank, qk_head_dim, v_head_dim, qk_pos_emb_head_dim,
mtp_num_layers, seq_length, batch_size, iter_elapsed_time, num_p800_cards,
hybrid_override_pattern=None):
self.is_hybrid_model = is_hybrid_model
self.group_query_attention = group_query_attention
self.swiglu = swiglu
self.num_layers = num_layers
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.padded_vocab_size = padded_vocab_size
self.num_attention_heads = num_attention_heads
self.kv_channels = kv_channels
self.num_experts = num_experts
self.moe_layer_freq = moe_layer_freq
self.moe_router_topk = moe_router_topk
self.moe_ffn_hidden_size = moe_ffn_hidden_size
self.moe_shared_expert_intermediate_size = moe_shared_expert_intermediate_size
self.multi_latent_attention = multi_latent_attention
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank
self.qk_head_dim = qk_head_dim
self.v_head_dim = v_head_dim
self.qk_pos_emb_head_dim = qk_pos_emb_head_dim
self.mtp_num_layers = mtp_num_layers
self.seq_length = seq_length
self.batch_size = batch_size
self.iter_elapsed_time = iter_elapsed_time
self.num_p800_cards = num_p800_cards
self.hybrid_override_pattern = hybrid_override_pattern
mfu_parameter = parameter(is_hybrid_model, group_query_attention, swiglu, num_layers, hidden_size,
ffn_hidden_size, padded_vocab_size, num_attention_heads, kv_channels,
num_experts, moe_layer_freq, moe_router_topk, moe_ffn_hidden_size, moe_shared_expert_intermediate_size,
multi_latent_attention, q_lora_rank, kv_lora_rank, qk_head_dim, v_head_dim, qk_pos_emb_head_dim,
mtp_num_layers, seq_length, batch_size, iter_elapsed_time, num_p800_cards,
hybrid_override_pattern=None)
model_flops = num_floating_point_operations(mfu_parameter)
flops_per_token = model_flops / (batch_size * seq_length)
print(f"FLOPs Per Iteration: {model_flops}\nFLOPs Per Token: {flops_per_token}")
assert (
model_flops and iter_elapsed_time and num_p800_cards
), "Iter elapsed time and P800 cards must be provided"
mfu = model_flops / (iter_elapsed_time * num_p800_cards * 3.5e14)
print(f"MFU P800 bf16: {mfu:.2%}")
return model_flops, flops_per_token, "{:.2f}%".format(mfu * 100)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
args = parser.parse_args()
# Standard Transformer config
args.is_hybrid_model = False
args.group_query_attention = False
args.swiglu = True
args.num_layers = 61
args.hidden_size = 7168
args.ffn_hidden_size = 18432
args.padded_vocab_size = 100002
args.num_attention_heads = 128
args.kv_channels = 128
# MoE config
args.num_experts = 256
args.moe_layer_freq = 1
args.moe_router_topk = 8
args.moe_ffn_hidden_size = 2048
args.moe_shared_expert_intermediate_size = 2048
# MLA config
args.multi_latent_attention = True
args.q_lora_rank = 1536
args.kv_lora_rank = 512
args.qk_head_dim = 128
args.v_head_dim = 128
args.qk_pos_emb_head_dim = 64
# MTP config
args.mtp_num_layers = 1
# Data config
args.seq_length = 4096
args.batch_size = 1024
# mfu config
args.iter_elapsed_time = 100
args.num_p800_cards = 512
#calculate_mfu(calculate_flops(args), iter_elapsed_time=args.iter_elapsed_time, num_p800_cards=args.num_p800_cards)
with gr.Blocks(title="Compute MFU") as demo:
gr.Markdown("## Compute MFU")
with gr.Group() as custom_group:
gr.Markdown("Standard Transformer config:")
with gr.Row():
is_hybrid_model = gr.Dropdown(["True", "False"],
label="hybrid model",
value="True" if args.is_hybrid_model else "False")
group_query_attention = gr.Dropdown(["True", "False"],
label="group query attention",
value="True" if args.group_query_attention else "False")
swiglu = gr.Dropdown(["True", "False"],
label="swiglu",
value="True" if args.swiglu else "False")
num_layers = gr.Number(label="num layers", value=args.num_layers, precision=0)
hidden_size = gr.Number(label="hidden size", value=args.hidden_size, precision=0)
ffn_hidden_size = gr.Number(label="ffn hidden size", value=args.ffn_hidden_size, precision=0)
padded_vocab_size = gr.Number(label="padded vocab size", value=args.padded_vocab_size, precision=0)
num_attention_heads = gr.Number(label="num attention heads", value=args.num_attention_heads, precision=0)
kv_channels = gr.Number(label="kv channels", value=args.kv_channels, precision=0)
with gr.Group() as custom_group:
gr.Markdown("MoE config:")
with gr.Row():
num_experts = gr.Number(label="num experts", value=args.num_experts, precision=0)
moe_layer_freq = gr.Number(label="moe layer freq", value=args.moe_layer_freq, precision=0)
moe_router_topk = gr.Number(label="moe router topk", value=args.moe_router_topk, precision=0)
moe_ffn_hidden_size = gr.Number(label="moe ffn hidden size", value=args.moe_ffn_hidden_size, precision=0)
moe_shared_expert_intermediate_size = gr.Number(label="moe shared expert intermediate size", value=args.moe_shared_expert_intermediate_size, precision=0)
with gr.Group() as custom_group:
gr.Markdown("MLA config:")
with gr.Row():
multi_latent_attention = gr.Dropdown(["True", "False"],
label="multi_latent_attention",
value="True" if args.multi_latent_attention else "False")
q_lora_rank = gr.Number(label="q lora rank", value=args.q_lora_rank, precision=0)
kv_lora_rank = gr.Number(label="kv lora rank", value=args.kv_lora_rank, precision=0)
qk_head_dim = gr.Number(label="qk head dim", value=args.qk_head_dim, precision=0)
v_head_dim = gr.Number(label="v head dim", value=args.v_head_dim, precision=0)
qk_pos_emb_head_dim = gr.Number(label="qk pos emb head dim", value=args.qk_pos_emb_head_dim, precision=0)
with gr.Group() as custom_group:
with gr.Row():
with gr.Group():
gr.Markdown("MTP config:")
mtp_num_layers = gr.Number(label="mtp num layers", value=args.mtp_num_layers, precision=0)
with gr.Group():
gr.Markdown("Data config:")
with gr.Row():
seq_length = gr.Number(label="seq length", value=args.seq_length, precision=0)
batch_size = gr.Number(label="batch size", value=args.batch_size, precision=0)
with gr.Group():
gr.Markdown("MFU config:")
with gr.Row():
iter_elapsed_time = gr.Number(label="iter elapsed time", value=args.iter_elapsed_time, precision=0)
num_p800_cards = gr.Number(label="num p800 cards", value=args.num_p800_cards, precision=0)
# 计算结果显示控件
with gr.Group() as custom_group:
gr.Markdown("Compute results:")
with gr.Row():
model_flops = gr.Number(label="model flops", precision=0)
flops_per_token = gr.Number(label="flops per token", precision=0)
# mfu = gr.Number(label="mfu", precision=0)
mfu = gr.Textbox(label="MFU P800 bf16")
# 计算按钮
btn = gr.Button("Calculate")
btn.click( fn=calculate_mfu_web,
inputs=[is_hybrid_model, group_query_attention, swiglu, num_layers, hidden_size,
ffn_hidden_size, padded_vocab_size, num_attention_heads, kv_channels,
num_experts, moe_layer_freq, moe_router_topk, moe_ffn_hidden_size, moe_shared_expert_intermediate_size,
multi_latent_attention, q_lora_rank, kv_lora_rank, qk_head_dim, v_head_dim, qk_pos_emb_head_dim,
mtp_num_layers, seq_length, batch_size, iter_elapsed_time, num_p800_cards],
outputs=[model_flops, flops_per_token, mfu]
)
# 启动 Gradio 应用
demo.launch() |