Spaces:
Sleeping
Sleeping
Update utils.py
Browse files
utils.py
CHANGED
@@ -1,17 +1,44 @@
|
|
1 |
-
|
2 |
import re
|
|
|
|
|
|
|
3 |
|
4 |
-
#
|
|
|
|
|
|
|
5 |
ocr = PaddleOCR(use_angle_cls=True, lang='en')
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def extract_kyc_fields(file_path, force_type=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
try:
|
9 |
result = ocr.ocr(file_path, cls=True)
|
10 |
-
|
11 |
lines = []
|
|
|
12 |
for block in result:
|
13 |
for line in block:
|
14 |
-
text = line[1][0].strip()
|
15 |
if text:
|
16 |
lines.append(text)
|
17 |
|
@@ -20,96 +47,157 @@ def extract_kyc_fields(file_path, force_type=None):
|
|
20 |
if force_type:
|
21 |
card_type = force_type.upper()
|
22 |
else:
|
23 |
-
pan_match = re.search(r'\b[A-Z]{5}[0-9]{4}[A-Z]\b', full_text)
|
24 |
-
aadhaar_match = re.search(r'\b\d{4}[\s\-]?\d{4}[\s\-]?\d{4}\b', full_text)
|
25 |
card_type = "UNKNOWN"
|
26 |
-
if
|
27 |
card_type = "PAN"
|
28 |
-
elif
|
29 |
card_type = "AADHAAR"
|
30 |
|
31 |
response = {"card_type": card_type}
|
32 |
|
33 |
if card_type == "PAN":
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
response["dob"] = extract_dob(lines)
|
38 |
-
response["name"] = extract_pan_name(lines)
|
39 |
|
40 |
elif card_type == "AADHAAR":
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
response["dob"] = extract_dob(lines)
|
45 |
-
response["gender"] = extract_gender(lines)
|
46 |
-
response["name"] = extract_aadhaar_name(lines)
|
47 |
|
48 |
else:
|
49 |
response["error"] = "Could not identify document as PAN or Aadhaar."
|
|
|
|
|
|
|
50 |
|
51 |
return response
|
52 |
except Exception as e:
|
53 |
return {"error": f"OCR processing failed: {str(e)}"}
|
54 |
|
|
|
|
|
|
|
55 |
|
56 |
-
def
|
57 |
-
|
58 |
-
for line in lines:
|
59 |
-
match = re.search(r'\b\d{2}[./-]\d{2}[./-]\d{4}\b', line)
|
60 |
-
if match:
|
61 |
-
return match.group(0)
|
62 |
-
for line in lines:
|
63 |
-
match = re.search(r'\b\d{4}-\d{2}-\d{2}\b', line)
|
64 |
-
if match:
|
65 |
-
return match.group(0)
|
66 |
for line in lines:
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
def extract_gender(lines):
|
74 |
for line in lines:
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
return "FEMALE"
|
79 |
-
elif "TRANSGENDER" in line.upper():
|
80 |
-
return "TRANSGENDER"
|
81 |
return "Not found"
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
if "INCOME TAX DEPARTMENT" in lines[i].upper():
|
87 |
for j in range(i + 1, len(lines)):
|
88 |
-
|
89 |
-
if (
|
90 |
-
|
91 |
-
|
92 |
-
and not re.search(r'\d', possible)
|
93 |
-
):
|
94 |
-
return possible.strip()
|
95 |
return "Not found"
|
96 |
|
97 |
-
|
98 |
-
|
99 |
for i, line in enumerate(lines):
|
100 |
-
if re.search(
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
108 |
for line in lines:
|
109 |
-
if (
|
110 |
-
not re.search(r'\d', line)
|
111 |
-
and len(line.split()) >= 2
|
112 |
-
and not any(x in line.upper() for x in ["DOB", "INDIA", "MALE", "FEMALE", "GOVERNMENT"])
|
113 |
-
):
|
114 |
return line.strip()
|
115 |
return "Not found"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import re
|
3 |
+
from datetime import datetime
|
4 |
+
from simple_salesforce import Salesforce
|
5 |
+
from paddleocr import PaddleOCR
|
6 |
|
7 |
+
# -----------------------------------
|
8 |
+
# OCR SETUP
|
9 |
+
# -----------------------------------
|
10 |
+
os.environ.setdefault("OMP_NUM_THREADS", "1") # limit threads for stability
|
11 |
ocr = PaddleOCR(use_angle_cls=True, lang='en')
|
12 |
|
13 |
+
# Regex patterns
|
14 |
+
PAN_REGEX = r'\b[A-Z]{5}[0-9]{4}[A-Z]\b'
|
15 |
+
AADHAAR_REGEX = r'\b\d{4}[\s-]?\d{4}[\s-]?\d{4}\b'
|
16 |
+
DOB_REGEXES = [
|
17 |
+
r'\b\d{2}[./-]\d{2}[./-]\d{4}\b',
|
18 |
+
r'\b\d{4}-\d{2}-\d{2}\b',
|
19 |
+
r'\b\d{2}[./-](JAN|FEB|MAR|APR|MAY|JUN|JUL|AUG|SEP|OCT|NOV|DEC)[./-]\d{4}\b',
|
20 |
+
r'\b(19|20)\d{2}\b'
|
21 |
+
]
|
22 |
+
GENDERS = ["MALE", "FEMALE", "TRANSGENDER"] # kept for completeness (not stored)
|
23 |
+
|
24 |
+
# -----------------------------------
|
25 |
+
# OCR HELPERS
|
26 |
+
# -----------------------------------
|
27 |
def extract_kyc_fields(file_path, force_type=None):
|
28 |
+
"""
|
29 |
+
Returns a dict with:
|
30 |
+
card_type: PAN | AADHAAR | UNKNOWN
|
31 |
+
pan_number / aadhaar_number
|
32 |
+
name (best-guess)
|
33 |
+
dob (best-guess for the detected card)
|
34 |
+
"""
|
35 |
try:
|
36 |
result = ocr.ocr(file_path, cls=True)
|
|
|
37 |
lines = []
|
38 |
+
|
39 |
for block in result:
|
40 |
for line in block:
|
41 |
+
text = re.sub(r'\s+', ' ', line[1][0].strip())
|
42 |
if text:
|
43 |
lines.append(text)
|
44 |
|
|
|
47 |
if force_type:
|
48 |
card_type = force_type.upper()
|
49 |
else:
|
|
|
|
|
50 |
card_type = "UNKNOWN"
|
51 |
+
if re.search(PAN_REGEX, full_text):
|
52 |
card_type = "PAN"
|
53 |
+
elif re.search(AADHAAR_REGEX, full_text):
|
54 |
card_type = "AADHAAR"
|
55 |
|
56 |
response = {"card_type": card_type}
|
57 |
|
58 |
if card_type == "PAN":
|
59 |
+
response["pan_number"] = _first_match(PAN_REGEX, full_text) or "Not found"
|
60 |
+
response["dob"] = _extract_dob(lines)
|
61 |
+
response["name"] = _extract_pan_name(lines)
|
|
|
|
|
62 |
|
63 |
elif card_type == "AADHAAR":
|
64 |
+
response["aadhaar_number"] = _first_match(AADHAAR_REGEX, full_text) or "Not found"
|
65 |
+
response["dob"] = _extract_dob(lines)
|
66 |
+
response["name"] = _extract_aadhaar_name(lines)
|
|
|
|
|
|
|
67 |
|
68 |
else:
|
69 |
response["error"] = "Could not identify document as PAN or Aadhaar."
|
70 |
+
# best-effort generic fields
|
71 |
+
response["dob"] = _extract_dob(lines)
|
72 |
+
response["name"] = _extract_generic_name(lines)
|
73 |
|
74 |
return response
|
75 |
except Exception as e:
|
76 |
return {"error": f"OCR processing failed: {str(e)}"}
|
77 |
|
78 |
+
def _first_match(pattern, text, flags=0):
|
79 |
+
m = re.search(pattern, text, flags)
|
80 |
+
return m.group(0) if m else None
|
81 |
|
82 |
+
def _extract_dob(lines):
|
83 |
+
# Try common formats
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
for line in lines:
|
85 |
+
for pattern in DOB_REGEXES[:-1]:
|
86 |
+
m = re.search(pattern, line, re.IGNORECASE)
|
87 |
+
if m:
|
88 |
+
return m.group(0)
|
89 |
+
# Year-only with labels
|
|
|
|
|
90 |
for line in lines:
|
91 |
+
m = re.search(DOB_REGEXES[-1], line)
|
92 |
+
if m and any(lbl in line.upper() for lbl in ["YOB", "YEAR", "BIRTH", "DOB"]):
|
93 |
+
return m.group(0)
|
|
|
|
|
|
|
94 |
return "Not found"
|
95 |
|
96 |
+
def _extract_pan_name(lines):
|
97 |
+
for i, line in enumerate(lines):
|
98 |
+
if "INCOME TAX DEPARTMENT" in line.upper():
|
|
|
99 |
for j in range(i + 1, len(lines)):
|
100 |
+
candidate = lines[j].strip()
|
101 |
+
if re.match(r'^[A-Z\s.]+$', candidate) and not re.search(r'\d', candidate):
|
102 |
+
if not any(x in candidate.upper() for x in ["INDIA", "GOVT", "DEPARTMENT"]):
|
103 |
+
return candidate
|
|
|
|
|
|
|
104 |
return "Not found"
|
105 |
|
106 |
+
def _extract_aadhaar_name(lines):
|
107 |
+
# Heuristic: Name usually above DOB
|
108 |
for i, line in enumerate(lines):
|
109 |
+
if any(re.search(p, line, re.IGNORECASE) for p in DOB_REGEXES):
|
110 |
+
if i > 0:
|
111 |
+
candidate = lines[i - 1].strip()
|
112 |
+
if _looks_like_name(candidate):
|
113 |
+
return candidate
|
114 |
+
# Fallback
|
115 |
+
for line in lines:
|
116 |
+
if _looks_like_name(line.strip()):
|
117 |
+
return line.strip()
|
118 |
+
return "Not found"
|
119 |
+
|
120 |
+
def _extract_generic_name(lines):
|
121 |
for line in lines:
|
122 |
+
if _looks_like_name(line.strip()):
|
|
|
|
|
|
|
|
|
123 |
return line.strip()
|
124 |
return "Not found"
|
125 |
+
|
126 |
+
def _looks_like_name(text):
|
127 |
+
if re.search(r'\d', text):
|
128 |
+
return False
|
129 |
+
if len(text.split()) < 2:
|
130 |
+
return False
|
131 |
+
banned = ["DOB", "INDIA", "MALE", "FEMALE", "GOVERNMENT"]
|
132 |
+
return not any(b in text.upper() for b in banned)
|
133 |
+
|
134 |
+
# -----------------------------------
|
135 |
+
# SALESFORCE HELPERS
|
136 |
+
# -----------------------------------
|
137 |
+
SF_USERNAME = os.getenv("SF_USERNAME", "")
|
138 |
+
SF_PASSWORD = os.getenv("SF_PASSWORD", "")
|
139 |
+
SF_TOKEN = os.getenv("SF_TOKEN", "")
|
140 |
+
SF_DOMAIN = os.getenv("SF_DOMAIN", "login") # "login"=prod, "test"=sandbox
|
141 |
+
|
142 |
+
def connect_salesforce():
|
143 |
+
try:
|
144 |
+
sf = Salesforce(
|
145 |
+
username=SF_USERNAME,
|
146 |
+
password=SF_PASSWORD,
|
147 |
+
security_token=SF_TOKEN,
|
148 |
+
domain=SF_DOMAIN
|
149 |
+
)
|
150 |
+
print(f"✅ Connected to Salesforce ({SF_DOMAIN})")
|
151 |
+
return sf
|
152 |
+
except Exception as e:
|
153 |
+
print("❌ Salesforce login failed:", e)
|
154 |
+
return None
|
155 |
+
|
156 |
+
def create_kyc_record(sf, kyc_data, file_name=None, agent_id=None):
|
157 |
+
"""
|
158 |
+
Creates a record in KYC_Record__c with the fields:
|
159 |
+
Aadhaar_Name__c, Aadhaar_DOB__c, Aadhaar_Number__c
|
160 |
+
Pan_Name__c, Pan_DOB__c, PAN_Number__c
|
161 |
+
Optionally includes Agent__c if you pass agent_id and that field exists.
|
162 |
+
"""
|
163 |
+
try:
|
164 |
+
if not sf:
|
165 |
+
return {"status": "error", "message": "Salesforce not connected"}
|
166 |
+
|
167 |
+
# Normalize values
|
168 |
+
def val_or_blank(key): return (kyc_data.get(key) or "").replace("Not found", "")
|
169 |
+
|
170 |
+
record = {
|
171 |
+
"Aadhaar_Name__c": "",
|
172 |
+
"Aadhaar_DOB__c": "",
|
173 |
+
"Aadhaar_Number__c":"",
|
174 |
+
"Pan_Name__c": "",
|
175 |
+
"Pan_DOB__c": "",
|
176 |
+
"PAN_Number__c": "",
|
177 |
+
}
|
178 |
+
|
179 |
+
ct = (kyc_data.get("card_type") or "").upper()
|
180 |
+
if ct == "AADHAAR":
|
181 |
+
record["Aadhaar_Name__c"] = val_or_blank("name")
|
182 |
+
record["Aadhaar_DOB__c"] = val_or_blank("dob")
|
183 |
+
record["Aadhaar_Number__c"] = val_or_blank("aadhaar_number")
|
184 |
+
elif ct == "PAN":
|
185 |
+
record["Pan_Name__c"] = val_or_blank("name")
|
186 |
+
record["Pan_DOB__c"] = val_or_blank("dob")
|
187 |
+
record["PAN_Number__c"] = val_or_blank("pan_number")
|
188 |
+
else:
|
189 |
+
# Unknown: best effort — fill name/dob into Aadhaar side to avoid losing data
|
190 |
+
record["Aadhaar_Name__c"] = val_or_blank("name")
|
191 |
+
record["Aadhaar_DOB__c"] = val_or_blank("dob")
|
192 |
+
|
193 |
+
# Optionally include Agent__c if provided (and exists in your org)
|
194 |
+
if agent_id:
|
195 |
+
record["Agent__c"] = agent_id
|
196 |
+
|
197 |
+
# Optionally store file name in a text field if you have one (not required by you):
|
198 |
+
# record["KYC_File_Name__c"] = file_name or ""
|
199 |
+
|
200 |
+
resp = sf.KYC_Record__c.create(record)
|
201 |
+
return {"status": "success", "record_id": resp.get("id")}
|
202 |
+
except Exception as e:
|
203 |
+
return {"status": "error", "message": str(e)}
|