Spaces:
Paused
Paused
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from .kernels import get_spatial_gradient_kernel2d, get_spatial_gradient_kernel3d, normalize_kernel2d | |
| def spatial_gradient(input: torch.Tensor, mode: str = 'sobel', order: int = 1, normalized: bool = True) -> torch.Tensor: | |
| r"""Compute the first order image derivative in both x and y using a Sobel operator. | |
| .. image:: _static/img/spatial_gradient.png | |
| Args: | |
| input: input image tensor with shape :math:`(B, C, H, W)`. | |
| mode: derivatives modality, can be: `sobel` or `diff`. | |
| order: the order of the derivatives. | |
| normalized: whether the output is normalized. | |
| Return: | |
| the derivatives of the input feature map. with shape :math:`(B, C, 2, H, W)`. | |
| .. note:: | |
| See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/ | |
| filtering_edges.html>`__. | |
| Examples: | |
| >>> input = torch.rand(1, 3, 4, 4) | |
| >>> output = spatial_gradient(input) # 1x3x2x4x4 | |
| >>> output.shape | |
| torch.Size([1, 3, 2, 4, 4]) | |
| """ | |
| if not isinstance(input, torch.Tensor): | |
| raise TypeError(f"Input type is not a torch.Tensor. Got {type(input)}") | |
| if not len(input.shape) == 4: | |
| raise ValueError(f"Invalid input shape, we expect BxCxHxW. Got: {input.shape}") | |
| # allocate kernel | |
| kernel: torch.Tensor = get_spatial_gradient_kernel2d(mode, order) | |
| if normalized: | |
| kernel = normalize_kernel2d(kernel) | |
| # prepare kernel | |
| b, c, h, w = input.shape | |
| tmp_kernel: torch.Tensor = kernel.to(input).detach() | |
| tmp_kernel = tmp_kernel.unsqueeze(1).unsqueeze(1) | |
| # convolve input tensor with sobel kernel | |
| kernel_flip: torch.Tensor = tmp_kernel.flip(-3) | |
| # Pad with "replicate for spatial dims, but with zeros for channel | |
| spatial_pad = [kernel.size(1) // 2, kernel.size(1) // 2, kernel.size(2) // 2, kernel.size(2) // 2] | |
| out_channels: int = 3 if order == 2 else 2 | |
| padded_inp: torch.Tensor = F.pad(input.reshape(b * c, 1, h, w), spatial_pad, 'replicate')[:, :, None] | |
| return F.conv3d(padded_inp, kernel_flip, padding=0).view(b, c, out_channels, h, w) | |
| def spatial_gradient3d(input: torch.Tensor, mode: str = 'diff', order: int = 1) -> torch.Tensor: | |
| r"""Compute the first and second order volume derivative in x, y and d using a diff operator. | |
| Args: | |
| input: input features tensor with shape :math:`(B, C, D, H, W)`. | |
| mode: derivatives modality, can be: `sobel` or `diff`. | |
| order: the order of the derivatives. | |
| Return: | |
| the spatial gradients of the input feature map with shape math:`(B, C, 3, D, H, W)` | |
| or :math:`(B, C, 6, D, H, W)`. | |
| Examples: | |
| >>> input = torch.rand(1, 4, 2, 4, 4) | |
| >>> output = spatial_gradient3d(input) | |
| >>> output.shape | |
| torch.Size([1, 4, 3, 2, 4, 4]) | |
| """ | |
| if not isinstance(input, torch.Tensor): | |
| raise TypeError(f"Input type is not a torch.Tensor. Got {type(input)}") | |
| if not len(input.shape) == 5: | |
| raise ValueError(f"Invalid input shape, we expect BxCxDxHxW. Got: {input.shape}") | |
| b, c, d, h, w = input.shape | |
| dev = input.device | |
| dtype = input.dtype | |
| if (mode == 'diff') and (order == 1): | |
| # we go for the special case implementation due to conv3d bad speed | |
| x: torch.Tensor = F.pad(input, 6 * [1], 'replicate') | |
| center = slice(1, -1) | |
| left = slice(0, -2) | |
| right = slice(2, None) | |
| out = torch.empty(b, c, 3, d, h, w, device=dev, dtype=dtype) | |
| out[..., 0, :, :, :] = x[..., center, center, right] - x[..., center, center, left] | |
| out[..., 1, :, :, :] = x[..., center, right, center] - x[..., center, left, center] | |
| out[..., 2, :, :, :] = x[..., right, center, center] - x[..., left, center, center] | |
| out = 0.5 * out | |
| else: | |
| # prepare kernel | |
| # allocate kernel | |
| kernel: torch.Tensor = get_spatial_gradient_kernel3d(mode, order) | |
| tmp_kernel: torch.Tensor = kernel.to(input).detach() | |
| tmp_kernel = tmp_kernel.repeat(c, 1, 1, 1, 1) | |
| # convolve input tensor with grad kernel | |
| kernel_flip: torch.Tensor = tmp_kernel.flip(-3) | |
| # Pad with "replicate for spatial dims, but with zeros for channel | |
| spatial_pad = [ | |
| kernel.size(2) // 2, | |
| kernel.size(2) // 2, | |
| kernel.size(3) // 2, | |
| kernel.size(3) // 2, | |
| kernel.size(4) // 2, | |
| kernel.size(4) // 2, | |
| ] | |
| out_ch: int = 6 if order == 2 else 3 | |
| out = F.conv3d(F.pad(input, spatial_pad, 'replicate'), kernel_flip, padding=0, groups=c).view( | |
| b, c, out_ch, d, h, w | |
| ) | |
| return out | |
| def sobel(input: torch.Tensor, normalized: bool = True, eps: float = 1e-6) -> torch.Tensor: | |
| r"""Compute the Sobel operator and returns the magnitude per channel. | |
| .. image:: _static/img/sobel.png | |
| Args: | |
| input: the input image with shape :math:`(B,C,H,W)`. | |
| normalized: if True, L1 norm of the kernel is set to 1. | |
| eps: regularization number to avoid NaN during backprop. | |
| Return: | |
| the sobel edge gradient magnitudes map with shape :math:`(B,C,H,W)`. | |
| .. note:: | |
| See a working example `here <https://kornia-tutorials.readthedocs.io/en/latest/ | |
| filtering_edges.html>`__. | |
| Example: | |
| >>> input = torch.rand(1, 3, 4, 4) | |
| >>> output = sobel(input) # 1x3x4x4 | |
| >>> output.shape | |
| torch.Size([1, 3, 4, 4]) | |
| """ | |
| if not isinstance(input, torch.Tensor): | |
| raise TypeError(f"Input type is not a torch.Tensor. Got {type(input)}") | |
| if not len(input.shape) == 4: | |
| raise ValueError(f"Invalid input shape, we expect BxCxHxW. Got: {input.shape}") | |
| # comput the x/y gradients | |
| edges: torch.Tensor = spatial_gradient(input, normalized=normalized) | |
| # unpack the edges | |
| gx: torch.Tensor = edges[:, :, 0] | |
| gy: torch.Tensor = edges[:, :, 1] | |
| # compute gradient maginitude | |
| magnitude: torch.Tensor = torch.sqrt(gx * gx + gy * gy + eps) | |
| return magnitude | |
| class SpatialGradient(nn.Module): | |
| r"""Compute the first order image derivative in both x and y using a Sobel operator. | |
| Args: | |
| mode: derivatives modality, can be: `sobel` or `diff`. | |
| order: the order of the derivatives. | |
| normalized: whether the output is normalized. | |
| Return: | |
| the sobel edges of the input feature map. | |
| Shape: | |
| - Input: :math:`(B, C, H, W)` | |
| - Output: :math:`(B, C, 2, H, W)` | |
| Examples: | |
| >>> input = torch.rand(1, 3, 4, 4) | |
| >>> output = SpatialGradient()(input) # 1x3x2x4x4 | |
| """ | |
| def __init__(self, mode: str = 'sobel', order: int = 1, normalized: bool = True) -> None: | |
| super().__init__() | |
| self.normalized: bool = normalized | |
| self.order: int = order | |
| self.mode: str = mode | |
| def __repr__(self) -> str: | |
| return ( | |
| self.__class__.__name__ + '(' | |
| 'order=' + str(self.order) + ', ' + 'normalized=' + str(self.normalized) + ', ' + 'mode=' + self.mode + ')' | |
| ) | |
| def forward(self, input: torch.Tensor) -> torch.Tensor: | |
| return spatial_gradient(input, self.mode, self.order, self.normalized) | |
| class SpatialGradient3d(nn.Module): | |
| r"""Compute the first and second order volume derivative in x, y and d using a diff operator. | |
| Args: | |
| mode: derivatives modality, can be: `sobel` or `diff`. | |
| order: the order of the derivatives. | |
| Return: | |
| the spatial gradients of the input feature map. | |
| Shape: | |
| - Input: :math:`(B, C, D, H, W)`. D, H, W are spatial dimensions, gradient is calculated w.r.t to them. | |
| - Output: :math:`(B, C, 3, D, H, W)` or :math:`(B, C, 6, D, H, W)` | |
| Examples: | |
| >>> input = torch.rand(1, 4, 2, 4, 4) | |
| >>> output = SpatialGradient3d()(input) | |
| >>> output.shape | |
| torch.Size([1, 4, 3, 2, 4, 4]) | |
| """ | |
| def __init__(self, mode: str = 'diff', order: int = 1) -> None: | |
| super().__init__() | |
| self.order: int = order | |
| self.mode: str = mode | |
| self.kernel = get_spatial_gradient_kernel3d(mode, order) | |
| return | |
| def __repr__(self) -> str: | |
| return self.__class__.__name__ + '(' 'order=' + str(self.order) + ', ' + 'mode=' + self.mode + ')' | |
| def forward(self, input: torch.Tensor) -> torch.Tensor: # type: ignore | |
| return spatial_gradient3d(input, self.mode, self.order) | |
| class Sobel(nn.Module): | |
| r"""Compute the Sobel operator and returns the magnitude per channel. | |
| Args: | |
| normalized: if True, L1 norm of the kernel is set to 1. | |
| eps: regularization number to avoid NaN during backprop. | |
| Return: | |
| the sobel edge gradient magnitudes map. | |
| Shape: | |
| - Input: :math:`(B, C, H, W)` | |
| - Output: :math:`(B, C, H, W)` | |
| Examples: | |
| >>> input = torch.rand(1, 3, 4, 4) | |
| >>> output = Sobel()(input) # 1x3x4x4 | |
| """ | |
| def __init__(self, normalized: bool = True, eps: float = 1e-6) -> None: | |
| super().__init__() | |
| self.normalized: bool = normalized | |
| self.eps: float = eps | |
| def __repr__(self) -> str: | |
| return self.__class__.__name__ + '(' 'normalized=' + str(self.normalized) + ')' | |
| def forward(self, input: torch.Tensor) -> torch.Tensor: | |
| return sobel(input, self.normalized, self.eps) |