Spaces:
Paused
Paused
Update web-demos/hugging_face/app.py
Browse files- web-demos/hugging_face/app.py +46 -47
web-demos/hugging_face/app.py
CHANGED
@@ -61,52 +61,48 @@ def get_prompt(click_state, click_input):
|
|
61 |
return prompt
|
62 |
|
63 |
# extract frames from upload video
|
|
|
|
|
|
|
64 |
def get_frames_from_video(video_input, video_state):
|
65 |
-
"""
|
66 |
-
Args:
|
67 |
-
video_path:str
|
68 |
-
timestamp:float64
|
69 |
-
Return
|
70 |
-
[[0:nearest_frame], [nearest_frame:], nearest_frame]
|
71 |
-
"""
|
72 |
video_path = video_input
|
73 |
frames = []
|
74 |
user_name = time.time()
|
75 |
status_ok = True
|
76 |
operation_log = [("[Must Do]", "Click image"), (": Video uploaded! Try to click the image shown in step2 to add masks.\n", None)]
|
77 |
try:
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
operation_log = [("You uploaded a video with more than 500 frames. Stop the video extraction. Kindly lower the video frame rate to a value below 500. We highly recommend deploying the demo locally for long video processing.", "Error")]
|
84 |
-
ret, frame = cap.read()
|
85 |
-
if ret == True:
|
86 |
-
original_h, original_w = frame.shape[:2]
|
87 |
-
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
88 |
status_ok = False
|
89 |
-
|
90 |
-
|
91 |
-
ret, frame = cap.read()
|
92 |
-
if ret == True:
|
93 |
-
# resize input image
|
94 |
-
original_h, original_w = frame.shape[:2]
|
95 |
-
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
96 |
-
else:
|
97 |
-
break
|
98 |
-
t = len(frames)
|
99 |
-
if t > 0:
|
100 |
-
print(f'Inp video shape: t_{t}, s_{original_h}x{original_w}')
|
101 |
-
else:
|
102 |
-
print(f'Inp video shape: t_{t}, no input video!!!')
|
103 |
-
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
|
104 |
status_ok = False
|
105 |
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
operation_log = [(f"Video uploaded! Try to click the image shown in step2 to add masks. (You uploaded a video with a size of {original_w}x{original_h}, and the length of its longest edge exceeds 720 pixels. We may resize the input video during processing.)", "Normal")]
|
110 |
|
111 |
video_state = {
|
112 |
"user_name": user_name,
|
@@ -117,18 +113,22 @@ def get_frames_from_video(video_input, video_state):
|
|
117 |
"logits": [None]*len(frames),
|
118 |
"select_frame_number": 0,
|
119 |
"fps": fps
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
123 |
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0])
|
|
|
124 |
return video_state, video_info, video_state["origin_images"][0], gr.update(visible=status_ok, maximum=len(frames), value=1), gr.update(visible=status_ok, maximum=len(frames), value=len(frames)), \
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
|
133 |
# get the select frame from gradio slider
|
134 |
def select_template(image_selection_slider, video_state, interactive_state, mask_dropdown):
|
@@ -357,8 +357,7 @@ def inpaint_video(video_state, *_args):
|
|
357 |
video_output = generate_video_from_frames(
|
358 |
inpainted_all,
|
359 |
output_path=output_path,
|
360 |
-
fps=fps
|
361 |
-
bitrate="30M"
|
362 |
)
|
363 |
|
364 |
return video_output, operation_log, operation_log
|
|
|
61 |
return prompt
|
62 |
|
63 |
# extract frames from upload video
|
64 |
+
import tempfile
|
65 |
+
import ffmpeg
|
66 |
+
from PIL import Image
|
67 |
def get_frames_from_video(video_input, video_state):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
video_path = video_input
|
69 |
frames = []
|
70 |
user_name = time.time()
|
71 |
status_ok = True
|
72 |
operation_log = [("[Must Do]", "Click image"), (": Video uploaded! Try to click the image shown in step2 to add masks.\n", None)]
|
73 |
try:
|
74 |
+
# Получаем FPS из видео
|
75 |
+
probe = ffmpeg.probe(video_path)
|
76 |
+
video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
|
77 |
+
fps_str = video_streams[0]['r_frame_rate'] # Например: "25/1"
|
78 |
+
fps = eval(fps_str)
|
79 |
+
|
80 |
+
# Извлекаем кадры с максимальным качеством во временную папку
|
81 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
82 |
+
frame_pattern = os.path.join(tmpdir, 'frame_%05d.png')
|
83 |
+
(
|
84 |
+
ffmpeg
|
85 |
+
.input(video_path)
|
86 |
+
.output(frame_pattern, start_number=0, vsync=0, qscale=0)
|
87 |
+
.run(quiet=True)
|
88 |
+
)
|
89 |
+
extracted = sorted(os.listdir(tmpdir))
|
90 |
+
for file in extracted:
|
91 |
+
img = Image.open(os.path.join(tmpdir, file)).convert("RGB")
|
92 |
+
frames.append(np.array(img))
|
93 |
+
|
94 |
+
original_h, original_w = frames[0].shape[:2]
|
95 |
+
|
96 |
+
if len(frames) >= 500:
|
97 |
operation_log = [("You uploaded a video with more than 500 frames. Stop the video extraction. Kindly lower the video frame rate to a value below 500. We highly recommend deploying the demo locally for long video processing.", "Error")]
|
|
|
|
|
|
|
|
|
98 |
status_ok = False
|
99 |
+
|
100 |
+
except Exception as e:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
status_ok = False
|
102 |
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
|
103 |
+
|
104 |
+
if frames and (frames[0].shape[0] > 720 or frames[0].shape[1] > 720):
|
105 |
+
operation_log = [(f"Video uploaded! Try to click the image shown in step2 to add masks. (You uploaded a video with a size of {original_w}x{original_h}, and the length of its longest edge exceeds 720 pixels. We may resize the input video during processing.)", "Normal")]
|
|
|
106 |
|
107 |
video_state = {
|
108 |
"user_name": user_name,
|
|
|
113 |
"logits": [None]*len(frames),
|
114 |
"select_frame_number": 0,
|
115 |
"fps": fps
|
116 |
+
}
|
117 |
+
|
118 |
+
video_info = "Video Name: {},\nFPS: {},\nTotal Frames: {},\nImage Size:{}".format(
|
119 |
+
video_state["video_name"], round(video_state["fps"], 0), len(frames), (original_w, original_h)
|
120 |
+
)
|
121 |
+
model.samcontroler.sam_controler.reset_image()
|
122 |
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0])
|
123 |
+
|
124 |
return video_state, video_info, video_state["origin_images"][0], gr.update(visible=status_ok, maximum=len(frames), value=1), gr.update(visible=status_ok, maximum=len(frames), value=len(frames)), \
|
125 |
+
gr.update(visible=status_ok), gr.update(visible=status_ok), \
|
126 |
+
gr.update(visible=status_ok), gr.update(visible=status_ok), \
|
127 |
+
gr.update(visible=status_ok), gr.update(visible=status_ok), \
|
128 |
+
gr.update(visible=status_ok), gr.update(visible=status_ok), \
|
129 |
+
gr.update(visible=status_ok), gr.update(visible=status_ok), \
|
130 |
+
gr.update(visible=status_ok, choices=[], value=[]), \
|
131 |
+
gr.update(visible=True, value=operation_log), gr.update(visible=status_ok, value=operation_log)
|
132 |
|
133 |
# get the select frame from gradio slider
|
134 |
def select_template(image_selection_slider, video_state, interactive_state, mask_dropdown):
|
|
|
357 |
video_output = generate_video_from_frames(
|
358 |
inpainted_all,
|
359 |
output_path=output_path,
|
360 |
+
fps=fps
|
|
|
361 |
)
|
362 |
|
363 |
return video_output, operation_log, operation_log
|