Gourisankar Padihary
commited on
Commit
·
cfb3435
1
Parent(s):
b58a992
corrected rmse and auroc calculation
Browse files- generator/compute_metrics.py +2 -2
- generator/compute_rmse_auc_roc_metrics.py +15 -47
- main.py +2 -2
generator/compute_metrics.py
CHANGED
|
@@ -20,8 +20,8 @@ def compute_metrics(attributes, total_sentences):
|
|
| 20 |
completeness_score = len(Ri & Ui) / len(Ri) if len(Ri) else 0
|
| 21 |
|
| 22 |
# Compute Adherence
|
| 23 |
-
|
| 24 |
-
adherence = 1 if all(info.get("fully_supported", False) for info in sentence_support_information) else 0
|
| 25 |
|
| 26 |
return {
|
| 27 |
"Context Relevance": context_relevance,
|
|
|
|
| 20 |
completeness_score = len(Ri & Ui) / len(Ri) if len(Ri) else 0
|
| 21 |
|
| 22 |
# Compute Adherence
|
| 23 |
+
adherence = all(info.get("fully_supported", False) for info in sentence_support_information)
|
| 24 |
+
#adherence = 1 if all(info.get("fully_supported", False) for info in sentence_support_information) else 0
|
| 25 |
|
| 26 |
return {
|
| 27 |
"Context Relevance": context_relevance,
|
generator/compute_rmse_auc_roc_metrics.py
CHANGED
|
@@ -15,17 +15,12 @@ def compute_rmse_auc_roc_metrics(llm, dataset, vector_store, num_question):
|
|
| 15 |
all_ground_truth_adherence = []
|
| 16 |
all_predicted_adherence = []
|
| 17 |
|
| 18 |
-
# To store RMSE scores for each question
|
| 19 |
-
relevance_scores = []
|
| 20 |
-
utilization_scores = []
|
| 21 |
-
adherence_scores = []
|
| 22 |
-
|
| 23 |
# For each question in dataset get the metrics
|
| 24 |
for i, document in enumerate(dataset):
|
| 25 |
# Extract ground truth metrics from dataset
|
| 26 |
ground_truth_relevance = dataset[i]['relevance_score']
|
| 27 |
ground_truth_utilization = dataset[i]['utilization_score']
|
| 28 |
-
ground_truth_adherence = dataset[i]['
|
| 29 |
|
| 30 |
query = document['question']
|
| 31 |
logging.info(f'Query number: {i + 1}')
|
|
@@ -35,65 +30,38 @@ def compute_rmse_auc_roc_metrics(llm, dataset, vector_store, num_question):
|
|
| 35 |
# Extract predicted metrics (ensure these are continuous if possible)
|
| 36 |
predicted_relevance = metrics.get('Context Relevance', 0) if metrics else 0
|
| 37 |
predicted_utilization = metrics.get('Context Utilization', 0) if metrics else 0
|
| 38 |
-
predicted_adherence = metrics.get('Adherence',
|
| 39 |
|
| 40 |
# === Handle Continuous Inputs for RMSE ===
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
# === Handle Binary Conversion for AUC-ROC ===
|
| 46 |
-
binary_ground_truth_relevance = 1 if ground_truth_relevance > 0.5 else 0
|
| 47 |
-
#binary_predicted_relevance = 1 if predicted_relevance > 0.5 else 0
|
| 48 |
-
|
| 49 |
-
binary_ground_truth_utilization = 1 if ground_truth_utilization > 0.2 else 0
|
| 50 |
-
#binary_predicted_utilization = 1 if predicted_utilization > 0.5 else 0
|
| 51 |
-
|
| 52 |
-
#binary_ground_truth_adherence = 1 if ground_truth_adherence > 0.5 else 0
|
| 53 |
-
#binary_predicted_adherence = 1 if predicted_adherence > 0.5 else 0
|
| 54 |
-
|
| 55 |
-
# === Accumulate data for overall AUC-ROC computation ===
|
| 56 |
-
all_ground_truth_relevance.append(binary_ground_truth_relevance)
|
| 57 |
-
all_predicted_relevance.append(predicted_relevance) # Use probability-based predictions
|
| 58 |
-
|
| 59 |
-
all_ground_truth_utilization.append(binary_ground_truth_utilization)
|
| 60 |
all_predicted_utilization.append(predicted_utilization)
|
| 61 |
-
|
| 62 |
all_ground_truth_adherence.append(ground_truth_adherence)
|
| 63 |
all_predicted_adherence.append(predicted_adherence)
|
| 64 |
|
| 65 |
-
# Store RMSE scores for each question
|
| 66 |
-
relevance_scores.append(relevance_rmse)
|
| 67 |
-
utilization_scores.append(utilization_rmse)
|
| 68 |
-
adherence_scores.append(adherence_rmse)
|
| 69 |
if i == num_question:
|
| 70 |
break
|
| 71 |
|
| 72 |
-
# === Compute AUC-ROC for the Entire Dataset ===
|
| 73 |
try:
|
| 74 |
-
|
| 75 |
-
#print(f"All Predicted Relevance: {all_predicted_relevance}")
|
| 76 |
-
relevance_auc = roc_auc_score(all_ground_truth_relevance, all_predicted_relevance)
|
| 77 |
except ValueError:
|
| 78 |
-
|
| 79 |
|
| 80 |
try:
|
| 81 |
-
|
| 82 |
-
#print(f"All Predicted Utilization: {all_predicted_utilization}")
|
| 83 |
-
utilization_auc = roc_auc_score(all_ground_truth_utilization, all_predicted_utilization)
|
| 84 |
except ValueError:
|
| 85 |
-
|
| 86 |
|
| 87 |
try:
|
| 88 |
-
|
| 89 |
-
|
| 90 |
adherence_auc = roc_auc_score(all_ground_truth_adherence, all_predicted_adherence)
|
| 91 |
except ValueError:
|
| 92 |
adherence_auc = None
|
| 93 |
|
| 94 |
-
print(f"Relevance RMSE
|
| 95 |
-
print(f"Utilization RMSE
|
| 96 |
-
print(f"Adherence RMSE (per question): {adherence_scores}")
|
| 97 |
-
print(f"\nOverall Relevance AUC-ROC: {relevance_auc}")
|
| 98 |
-
print(f"Overall Utilization AUC-ROC: {utilization_auc}")
|
| 99 |
print(f"Overall Adherence AUC-ROC: {adherence_auc}")
|
|
|
|
| 15 |
all_ground_truth_adherence = []
|
| 16 |
all_predicted_adherence = []
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
# For each question in dataset get the metrics
|
| 19 |
for i, document in enumerate(dataset):
|
| 20 |
# Extract ground truth metrics from dataset
|
| 21 |
ground_truth_relevance = dataset[i]['relevance_score']
|
| 22 |
ground_truth_utilization = dataset[i]['utilization_score']
|
| 23 |
+
ground_truth_adherence = 1 if dataset[i]['adherence_score'] else 0
|
| 24 |
|
| 25 |
query = document['question']
|
| 26 |
logging.info(f'Query number: {i + 1}')
|
|
|
|
| 30 |
# Extract predicted metrics (ensure these are continuous if possible)
|
| 31 |
predicted_relevance = metrics.get('Context Relevance', 0) if metrics else 0
|
| 32 |
predicted_utilization = metrics.get('Context Utilization', 0) if metrics else 0
|
| 33 |
+
predicted_adherence = 1 if metrics.get('Adherence', False) else 0
|
| 34 |
|
| 35 |
# === Handle Continuous Inputs for RMSE ===
|
| 36 |
+
all_ground_truth_relevance.append(ground_truth_relevance)
|
| 37 |
+
all_predicted_relevance.append(predicted_relevance)
|
| 38 |
+
all_ground_truth_utilization.append(ground_truth_utilization)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
all_predicted_utilization.append(predicted_utilization)
|
| 40 |
+
|
| 41 |
all_ground_truth_adherence.append(ground_truth_adherence)
|
| 42 |
all_predicted_adherence.append(predicted_adherence)
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
if i == num_question:
|
| 45 |
break
|
| 46 |
|
| 47 |
+
# === Compute RMSE & AUC-ROC for the Entire Dataset ===
|
| 48 |
try:
|
| 49 |
+
relevance_rmse = root_mean_squared_error(all_ground_truth_relevance, all_predicted_relevance)
|
|
|
|
|
|
|
| 50 |
except ValueError:
|
| 51 |
+
relevance_rmse = None
|
| 52 |
|
| 53 |
try:
|
| 54 |
+
utilization_rmse = root_mean_squared_error(all_ground_truth_utilization, all_predicted_utilization)
|
|
|
|
|
|
|
| 55 |
except ValueError:
|
| 56 |
+
utilization_rmse = None
|
| 57 |
|
| 58 |
try:
|
| 59 |
+
print(f"All Ground Truth Adherence: {all_ground_truth_utilization}")
|
| 60 |
+
print(f"All Predicted Utilization: {all_predicted_utilization}")
|
| 61 |
adherence_auc = roc_auc_score(all_ground_truth_adherence, all_predicted_adherence)
|
| 62 |
except ValueError:
|
| 63 |
adherence_auc = None
|
| 64 |
|
| 65 |
+
print(f"Relevance RMSE score: {relevance_rmse}")
|
| 66 |
+
print(f"Utilization RMSE score: {utilization_rmse}")
|
|
|
|
|
|
|
|
|
|
| 67 |
print(f"Overall Adherence AUC-ROC: {adherence_auc}")
|
main.py
CHANGED
|
@@ -11,7 +11,7 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
|
|
| 11 |
|
| 12 |
def main():
|
| 13 |
logging.info("Starting the RAG pipeline")
|
| 14 |
-
data_set_name = '
|
| 15 |
|
| 16 |
# Load the dataset
|
| 17 |
dataset = load_data(data_set_name)
|
|
@@ -39,7 +39,7 @@ def main():
|
|
| 39 |
generate_metrics(llm, vector_store, sample_question)
|
| 40 |
|
| 41 |
#Compute RMSE and AUC-ROC for entire dataset
|
| 42 |
-
|
| 43 |
|
| 44 |
logging.info("Finished!!!")
|
| 45 |
|
|
|
|
| 11 |
|
| 12 |
def main():
|
| 13 |
logging.info("Starting the RAG pipeline")
|
| 14 |
+
data_set_name = 'covidqa'
|
| 15 |
|
| 16 |
# Load the dataset
|
| 17 |
dataset = load_data(data_set_name)
|
|
|
|
| 39 |
generate_metrics(llm, vector_store, sample_question)
|
| 40 |
|
| 41 |
#Compute RMSE and AUC-ROC for entire dataset
|
| 42 |
+
compute_rmse_auc_roc_metrics(llm, dataset, vector_store, 10)
|
| 43 |
|
| 44 |
logging.info("Finished!!!")
|
| 45 |
|