Spaces:
Sleeping
Sleeping
Initial Gradio App
Browse files- requirements.txt +132 -0
- steering_gradio.py +180 -0
requirements.txt
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==2.1.0
|
2 |
+
accelerate==1.0.0
|
3 |
+
aiofiles==23.2.1
|
4 |
+
aiohappyeyeballs==2.4.3
|
5 |
+
aiohttp==3.10.9
|
6 |
+
aiosignal==1.3.1
|
7 |
+
annotated-types==0.7.0
|
8 |
+
anyio==4.6.2.post1
|
9 |
+
appnope==0.1.4
|
10 |
+
asttokens==2.4.1
|
11 |
+
astunparse==1.6.3
|
12 |
+
attrs==24.2.0
|
13 |
+
bitsandbytes==0.42.0
|
14 |
+
certifi==2024.8.30
|
15 |
+
charset-normalizer==3.3.2
|
16 |
+
click==8.1.7
|
17 |
+
comm==0.2.2
|
18 |
+
datasets==3.0.1
|
19 |
+
debugpy==1.8.6
|
20 |
+
decorator==5.1.1
|
21 |
+
diffusers==0.30.3
|
22 |
+
dill==0.3.8
|
23 |
+
einops==0.8.0
|
24 |
+
executing==2.1.0
|
25 |
+
fastapi==0.115.2
|
26 |
+
ffmpy==0.4.0
|
27 |
+
filelock==3.16.1
|
28 |
+
flatbuffers==24.3.25
|
29 |
+
frozenlist==1.4.1
|
30 |
+
fsspec==2024.6.1
|
31 |
+
gast==0.6.0
|
32 |
+
google-pasta==0.2.0
|
33 |
+
gradio==5.1.0
|
34 |
+
gradio_client==1.4.0
|
35 |
+
grpcio==1.67.0
|
36 |
+
h11==0.14.0
|
37 |
+
h5py==3.12.1
|
38 |
+
httpcore==1.0.6
|
39 |
+
httpx==0.27.2
|
40 |
+
huggingface-hub==0.25.1
|
41 |
+
idna==3.10
|
42 |
+
importlib_metadata==8.5.0
|
43 |
+
ipykernel==6.29.5
|
44 |
+
ipython==8.28.0
|
45 |
+
jedi==0.19.1
|
46 |
+
Jinja2==3.1.4
|
47 |
+
jupyter_client==8.6.3
|
48 |
+
jupyter_core==5.7.2
|
49 |
+
keras==3.6.0
|
50 |
+
libclang==18.1.1
|
51 |
+
loralib==0.1.2
|
52 |
+
Markdown==3.7
|
53 |
+
markdown-it-py==3.0.0
|
54 |
+
MarkupSafe==2.1.5
|
55 |
+
matplotlib-inline==0.1.7
|
56 |
+
mdurl==0.1.2
|
57 |
+
ml-dtypes==0.4.1
|
58 |
+
mlx==0.18.1
|
59 |
+
mlx-lm==0.19.0
|
60 |
+
mpmath==1.3.0
|
61 |
+
multidict==6.1.0
|
62 |
+
multiprocess==0.70.16
|
63 |
+
namex==0.0.8
|
64 |
+
nest-asyncio==1.6.0
|
65 |
+
networkx==3.3
|
66 |
+
numpy==1.26.4
|
67 |
+
opt_einsum==3.4.0
|
68 |
+
optree==0.13.0
|
69 |
+
orjson==3.10.7
|
70 |
+
packaging==24.1
|
71 |
+
pandas==2.2.3
|
72 |
+
parso==0.8.4
|
73 |
+
peft @ git+https://github.com/huggingface/peft.git@a724834ac43b9478b066d3ec8b421489151f3815
|
74 |
+
pexpect==4.9.0
|
75 |
+
pillow==10.4.0
|
76 |
+
platformdirs==4.3.6
|
77 |
+
prompt_toolkit==3.0.48
|
78 |
+
propcache==0.2.0
|
79 |
+
protobuf==4.25.5
|
80 |
+
psutil==6.0.0
|
81 |
+
ptyprocess==0.7.0
|
82 |
+
pure_eval==0.2.3
|
83 |
+
pyarrow==17.0.0
|
84 |
+
pydantic==2.9.2
|
85 |
+
pydantic_core==2.23.4
|
86 |
+
pydub==0.25.1
|
87 |
+
Pygments==2.18.0
|
88 |
+
python-dateutil==2.9.0.post0
|
89 |
+
python-multipart==0.0.12
|
90 |
+
pytz==2024.2
|
91 |
+
PyYAML==6.0.2
|
92 |
+
pyzmq==26.2.0
|
93 |
+
regex==2024.9.11
|
94 |
+
requests==2.32.3
|
95 |
+
rich==13.9.2
|
96 |
+
ruff==0.6.9
|
97 |
+
safetensors==0.4.5
|
98 |
+
scipy==1.14.1
|
99 |
+
semantic-version==2.10.0
|
100 |
+
sentencepiece==0.2.0
|
101 |
+
setuptools==75.1.0
|
102 |
+
shellingham==1.5.4
|
103 |
+
six==1.16.0
|
104 |
+
sniffio==1.3.1
|
105 |
+
stack-data==0.6.3
|
106 |
+
starlette==0.40.0
|
107 |
+
sympy==1.13.3
|
108 |
+
tensorboard==2.17.1
|
109 |
+
tensorboard-data-server==0.7.2
|
110 |
+
tensorflow==2.17.0
|
111 |
+
termcolor==2.5.0
|
112 |
+
tokenizers==0.20.0
|
113 |
+
tomlkit==0.12.0
|
114 |
+
torch==2.4.1
|
115 |
+
tornado==6.4.1
|
116 |
+
tqdm==4.66.5
|
117 |
+
traitlets==5.14.3
|
118 |
+
transformers @ git+https://github.com/huggingface/transformers.git@698b36da72ae8377fb08ade92b131069898007c2
|
119 |
+
typer==0.12.5
|
120 |
+
typing_extensions==4.12.2
|
121 |
+
tzdata==2024.2
|
122 |
+
urllib3==2.2.3
|
123 |
+
uvicorn==0.32.0
|
124 |
+
wcwidth==0.2.13
|
125 |
+
websockets==12.0
|
126 |
+
Werkzeug==3.0.4
|
127 |
+
wheel==0.44.0
|
128 |
+
wrapt==1.16.0
|
129 |
+
xxhash==3.5.0
|
130 |
+
yarl==1.14.0
|
131 |
+
zipp==3.20.2
|
132 |
+
|
steering_gradio.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from einops import einsum
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
model_name = 'microsoft/Phi-3-mini-4k-instruct'
|
9 |
+
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
model_name,
|
12 |
+
device_map=device,
|
13 |
+
torch_dtype="auto",
|
14 |
+
trust_remote_code=True,
|
15 |
+
)
|
16 |
+
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
+
|
19 |
+
def tokenize_instructions(tokenizer, instructions):
|
20 |
+
return tokenizer.apply_chat_template(
|
21 |
+
instructions,
|
22 |
+
padding=True,
|
23 |
+
truncation=False,
|
24 |
+
return_tensors="pt",
|
25 |
+
return_dict=True,
|
26 |
+
add_generation_prompt=True,
|
27 |
+
).input_ids
|
28 |
+
|
29 |
+
def find_steering_vecs(model, base_toks, target_toks, batch_size=16):
|
30 |
+
device = model.device
|
31 |
+
num_its = len(range(0, base_toks.shape[0], batch_size))
|
32 |
+
steering_vecs = {}
|
33 |
+
for i in tqdm(range(0, base_toks.shape[0], batch_size)):
|
34 |
+
base_out = model(base_toks[i:i+batch_size].to(device), output_hidden_states=True).hidden_states
|
35 |
+
target_out = model(target_toks[i:i+batch_size].to(device), output_hidden_states=True).hidden_states
|
36 |
+
for layer in range(len(base_out)):
|
37 |
+
if i == 0:
|
38 |
+
steering_vecs[layer] = torch.mean(target_out[layer][:,-1,:].detach().cpu() - base_out[layer][:,-1,:].detach().cpu(), dim=0)/num_its
|
39 |
+
else:
|
40 |
+
steering_vecs[layer] += torch.mean(target_out[layer][:,-1,:].detach().cpu() - base_out[layer][:,-1,:].detach().cpu(), dim=0)/num_its
|
41 |
+
return steering_vecs
|
42 |
+
|
43 |
+
def do_steering(model, test_toks, steering_vec, scale=1, normalise=True, layer=None, proj=True, batch_size=16):
|
44 |
+
def modify_activation():
|
45 |
+
def hook(model, input):
|
46 |
+
if normalise:
|
47 |
+
sv = steering_vec / steering_vec.norm()
|
48 |
+
else:
|
49 |
+
sv = steering_vec
|
50 |
+
if proj:
|
51 |
+
sv = einsum(input[0], sv.view(-1,1), 'b l h, h s -> b l s') * sv
|
52 |
+
input[0][:,:,:] = input[0][:,:,:] - scale * sv
|
53 |
+
return hook
|
54 |
+
|
55 |
+
handles = []
|
56 |
+
if steering_vec is not None:
|
57 |
+
for i in range(len(model.model.layers)):
|
58 |
+
if layer is None or i == layer:
|
59 |
+
handles.append(model.model.layers[i].register_forward_pre_hook(modify_activation()))
|
60 |
+
|
61 |
+
outs_all = []
|
62 |
+
for i in tqdm(range(0, test_toks.shape[0], batch_size)):
|
63 |
+
outs = model.generate(test_toks[i:i+batch_size], num_beams=4, do_sample=True, max_new_tokens=60)
|
64 |
+
outs_all.append(outs)
|
65 |
+
outs_all = torch.cat(outs_all, dim=0)
|
66 |
+
|
67 |
+
for handle in handles:
|
68 |
+
handle.remove()
|
69 |
+
|
70 |
+
return outs_all
|
71 |
+
|
72 |
+
def create_steering_vector(towards, away):
|
73 |
+
towards_data = [[{"role": "user", "content": text.strip()}] for text in towards.split(',')]
|
74 |
+
away_data = [[{"role": "user", "content": text.strip()}] for text in away.split(',')]
|
75 |
+
|
76 |
+
towards_toks = tokenize_instructions(tokenizer, towards_data)
|
77 |
+
away_toks = tokenize_instructions(tokenizer, away_data)
|
78 |
+
|
79 |
+
steering_vecs = find_steering_vecs(model, away_toks, towards_toks)
|
80 |
+
return steering_vecs
|
81 |
+
|
82 |
+
def chat(message, history, steering_vec, layer):
|
83 |
+
history_formatted = [{"role": "user" if i % 2 == 0 else "assistant", "content": msg} for i, msg in enumerate(history)]
|
84 |
+
history_formatted.append({"role": "user", "content": message})
|
85 |
+
|
86 |
+
input_ids = tokenize_instructions(tokenizer, [history_formatted])
|
87 |
+
|
88 |
+
generations_baseline = do_steering(model, input_ids.to(device), None)
|
89 |
+
for j in range(generations_baseline.shape[0]):
|
90 |
+
response_baseline = f"BASELINE: {tokenizer.decode(generations_baseline[j], skip_special_tokens=True, layer=layer)}"
|
91 |
+
|
92 |
+
if steering_vec is not None:
|
93 |
+
generation_intervene = do_steering(model, input_ids.to(device), steering_vec[layer].to(device), scale=1)
|
94 |
+
for j in range(generation_intervene.shape[0]):
|
95 |
+
response_intervention = f"INTERVENTION: {tokenizer.decode(generation_intervene[j], skip_special_tokens=True)}"
|
96 |
+
|
97 |
+
response = response_baseline + "\n\n" + response_intervention
|
98 |
+
|
99 |
+
return [(message, response)]
|
100 |
+
|
101 |
+
def launch_app():
|
102 |
+
with gr.Blocks() as demo:
|
103 |
+
steering_vec = gr.State(None)
|
104 |
+
layer = gr.State(None)
|
105 |
+
|
106 |
+
away_default = [
|
107 |
+
"Apples are a popular fruit enjoyed by people around the world.",
|
108 |
+
"The apple tree originated in Central Asia and has been cultivated for thousands of years.",
|
109 |
+
"There are over 7,500 known cultivars of apples.",
|
110 |
+
"Apples are members of the rose family, Rosaceae.",
|
111 |
+
# "The science of apple cultivation is called pomology.",
|
112 |
+
# "Apple trees typically take 4-5 years to produce their first fruit.",
|
113 |
+
# "The phrase 'An apple a day keeps the doctor away' originated in Wales in the 19th century.",
|
114 |
+
# "Apples are rich in antioxidants, flavonoids, and dietary fiber.",
|
115 |
+
# "The most popular apple variety in the United States is the Gala apple.",
|
116 |
+
# "Apple seeds contain a compound called amygdalin, which can release cyanide when digested.",
|
117 |
+
# "The apple is the official state fruit of New York.",
|
118 |
+
# "Apples can be eaten raw, cooked, or pressed for juice.",
|
119 |
+
# "The largest apple ever picked weighed 4 pounds 1 ounce.",
|
120 |
+
# "Apples float in water because 25 percent of their volume is air.",
|
121 |
+
# "The apple blossom is the state flower of Michigan.",
|
122 |
+
# "China is the world's largest producer of apples.",
|
123 |
+
# "The average apple tree can produce up to 840 pounds of apples per year.",
|
124 |
+
# "Apples ripen six to ten times faster at room temperature than if they are refrigerated.",
|
125 |
+
# "The first apple trees in North America were planted by pilgrims in Massachusetts Bay Colony.",
|
126 |
+
# "Apples are harvested by hand in orchards."
|
127 |
+
]
|
128 |
+
|
129 |
+
towards_default = [
|
130 |
+
"The United States of America is the world's third-largest country by total area.",
|
131 |
+
"America declared its independence from Great Britain on July 4, 1776.",
|
132 |
+
"The U.S. Constitution, written in 1787, is the oldest written national constitution still in use.",
|
133 |
+
"The United States has 50 states and one federal district, Washington D.C.",
|
134 |
+
# "America's national motto is 'In God We Trust,' adopted in 1956.",
|
135 |
+
# "The bald eagle is the national bird and symbol of the United States.",
|
136 |
+
# "The Statue of Liberty, a gift from France, stands in New York Harbor as a symbol of freedom.",
|
137 |
+
# "American culture has had a significant influence on global entertainment and technology.",
|
138 |
+
# "The United States is home to many diverse ecosystems, from deserts to tropical rainforests.",
|
139 |
+
# "America is often referred to as a 'melting pot' due to its diverse immigrant population.",
|
140 |
+
# "The U.S. has the world's largest economy by nominal GDP.",
|
141 |
+
# "American football, derived from rugby, is the most popular sport in the United States.",
|
142 |
+
# "The Grand Canyon, located in Arizona, is one of America's most famous natural landmarks.",
|
143 |
+
# "The U.S. sent the first humans to walk on the moon in 1969.",
|
144 |
+
# "America's system of government is a federal republic with a presidential system.",
|
145 |
+
# "The American flag, known as the Stars and Stripes, has 13 stripes and 50 stars.",
|
146 |
+
# "English is the de facto national language, but the U.S. has no official language at the federal level.",
|
147 |
+
# "The United States is home to many world-renowned universities, including Harvard and MIT.",
|
148 |
+
# "America's national anthem, 'The Star-Spangled Banner,' was written in 1814.",
|
149 |
+
# "The U.S. Interstate Highway System, started in 1956, is one of the largest public works projects in history."
|
150 |
+
]
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
towards = gr.Textbox(label="Towards (comma-separated)", value= ", ".join(sentence.replace(",", "") for sentence in towards_default))
|
154 |
+
away = gr.Textbox(label="Away from (comma-separated)", value= ", ".join(sentence.replace(",", "") for sentence in away_default))
|
155 |
+
|
156 |
+
with gr.Row():
|
157 |
+
create_vector = gr.Button("Create Steering Vector")
|
158 |
+
layer_slider = gr.Slider(minimum=0, maximum=len(model.model.layers)-1, step=1, label="Layer", value=0)
|
159 |
+
|
160 |
+
def create_vector_and_set_layer(towards, away, layer_value):
|
161 |
+
vectors = create_steering_vector(towards, away)
|
162 |
+
layer.value = int(layer_value)
|
163 |
+
steering_vec.value = vectors
|
164 |
+
return f"Steering vector created for layer {layer_value}"
|
165 |
+
create_vector.click(create_vector_and_set_layer, [towards, away, layer_slider], gr.Textbox())
|
166 |
+
|
167 |
+
chatbot = gr.Chatbot()
|
168 |
+
msg = gr.Textbox()
|
169 |
+
|
170 |
+
msg.submit(chat, [msg, chatbot, steering_vec, layer], chatbot)
|
171 |
+
|
172 |
+
demo.launch()
|
173 |
+
|
174 |
+
if __name__ == "__main__":
|
175 |
+
launch_app()
|
176 |
+
|
177 |
+
|
178 |
+
# clean up
|
179 |
+
# nicer baseline vs intervention
|
180 |
+
# auto clear after messgae
|