freddyaboulton HF Staff commited on
Commit
ac1bcc0
·
verified ·
1 Parent(s): 7abfff8

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. requirements.txt +2 -2
  2. run.ipynb +1 -1
  3. run.py +25 -10
requirements.txt CHANGED
@@ -1,2 +1,2 @@
1
- gradio-client @ git+https://github.com/gradio-app/gradio@ede74283d738f55e032a98fb1875605cb0b65d8a#subdirectory=client/python
2
- https://gradio-pypi-previews.s3.amazonaws.com/ede74283d738f55e032a98fb1875605cb0b65d8a/gradio-5.23.3-py3-none-any.whl
 
1
+ gradio-client @ git+https://github.com/gradio-app/gradio@d654e60ff61f76ebcf37f294f1d85305d344a70b#subdirectory=client/python
2
+ https://gradio-pypi-previews.s3.amazonaws.com/d654e60ff61f76ebcf37f294f1d85305d344a70b/gradio-5.23.3-py3-none-any.whl
run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: dataframe_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import pandas as pd\n", "import numpy as np\n", "\n", "def update_dataframe():\n", " regular_df = pd.DataFrame(np.random.randint(1, 10, size=(5, 5)), columns=pd.Index([str(i) for i in range(5)]))\n", " wide_df = pd.DataFrame([\n", " [5, 22, 91, 17, 73, 38, 84, 46, 65, 10, 155, 122, 11, 144, 133],\n", " [81, 42, 13, 97, 33, 77, 59, 100, 29, 61, 213, 195, 142, 118, 127],\n", " [37, 71, 63, 102, 28, 94, 19, 55, 88, 44, 116, 139, 122, 150, 147],\n", " [104, 52, 49, 26, 83, 67, 31, 92, 79, 18, 241, 115, 159, 123, 137],\n", " [16, 95, 74, 68, 43, 101, 27, 85, 39, 57, 129, 148, 132, 111, 156]\n", " ], columns=pd.Index([f\"col_{i}\" for i in range(15)]))\n", " return regular_df, wide_df\n", "\n", "def clear_dataframes():\n", " regular_empty_df = pd.DataFrame([], columns=pd.Index([str(i) for i in range(5)]))\n", " wide_empty_df = pd.DataFrame([], columns=pd.Index([f\"col_{i}\" for i in range(15)]))\n", " return regular_empty_df, wide_empty_df\n", "\n", "def increment_select_counter(evt: gr.SelectData, count):\n", " count_val = 1 if count is None else count + 1\n", " return count_val, evt.index, evt.value\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Row():\n", " with gr.Column(scale=1):\n", " initial_regular_df = pd.DataFrame(np.zeros((5, 5), dtype=int), columns=pd.Index([str(i) for i in range(5)]))\n", "\n", " df = gr.Dataframe(\n", " value=initial_regular_df,\n", " interactive=True,\n", " label=\"Interactive Dataframe\",\n", " show_label=True,\n", " elem_id=\"dataframe\",\n", " show_search=\"filter\",\n", " show_copy_button=True,\n", " show_row_numbers=True,\n", " static_columns=[4]\n", " )\n", "\n", " with gr.Column(scale=1):\n", " initial_wide_df = pd.DataFrame(np.zeros((5, 15), dtype=int), columns=pd.Index([f\"col_{i}\" for i in range(15)]))\n", "\n", " df_view = gr.Dataframe(\n", " value=initial_wide_df,\n", " interactive=False,\n", " label=\"Non-Interactive View (Scroll Horizontally)\",\n", " show_label=True,\n", " show_search=\"search\",\n", " elem_id=\"non-interactive-dataframe\",\n", " show_copy_button=True,\n", " show_row_numbers=True,\n", " show_fullscreen_button=True,\n", " )\n", "\n", " tall_df_value = [\n", " [\"DeepSeek Coder\", 79.3],\n", " [\"Llama 3.3\", 68.9],\n", " [\"Qwen 2.5\", 61.9],\n", " [\"Gemma 2\", 59.5],\n", " [\"GPT 2\", 18.3],\n", " ]\n", "\n", " def get_display_value(values):\n", " display_values = []\n", " medals = [\"\ud83e\udd47\", \"\ud83e\udd48\", \"\ud83e\udd49\"]\n", " for i, row in enumerate(values):\n", " if i < 3:\n", " display_values.append([f\"{medals[i]} {row[0]}\", row[1]])\n", " else:\n", " display_values.append([row[0], row[1]])\n", " return display_values\n", "\n", " display_value = get_display_value(tall_df_value)\n", "\n", " tall_df_value = {\n", " \"data\": tall_df_value,\n", " \"headers\": [\"Model\", \"% Correct (LeetCode Hard)\"],\n", " \"metadata\": {\n", " \"display_value\": display_value\n", " }\n", " }\n", "\n", " with gr.Row():\n", " df_tall = gr.Dataframe(\n", " value=tall_df_value,\n", " interactive=False,\n", " label=\"Tall Dataframe (Scroll Vertically)\",\n", " show_label=True,\n", " elem_id=\"dataframe_tall\",\n", " show_copy_button=True,\n", " show_row_numbers=True,\n", " max_height=300,\n", " )\n", "\n", " with gr.Row():\n", " with gr.Column():\n", " update_btn = gr.Button(\"Update dataframe\", elem_id=\"update_btn\")\n", " clear_btn = gr.Button(\"Clear dataframe\", elem_id=\"clear_btn\")\n", "\n", " with gr.Row():\n", " change_events = gr.Number(\n", " value=0, label=\"Change events\", elem_id=\"change_events\"\n", " )\n", " input_events = gr.Number(value=0, label=\"Input events\", elem_id=\"input_events\")\n", " select_events = gr.Number(\n", " value=0, label=\"Select events\", elem_id=\"select_events\"\n", " )\n", "\n", " with gr.Row():\n", " selected_cell_index = gr.Textbox(\n", " label=\"Selected cell index\", elem_id=\"selected_cell_index\"\n", " )\n", " selected_cell_value = gr.Textbox(\n", " label=\"Selected cell value\", elem_id=\"selected_cell_value\"\n", " )\n", "\n", " update_btn.click(fn=update_dataframe, outputs=[df, df_view])\n", " clear_btn.click(fn=clear_dataframes, outputs=[df, df_view, df_tall])\n", " df.change(fn=lambda x: x + 1, inputs=[change_events], outputs=[change_events])\n", " df.input(fn=lambda x: x + 1, inputs=[input_events], outputs=[input_events])\n", " df.select(\n", " fn=increment_select_counter,\n", " inputs=[select_events],\n", " outputs=[select_events, selected_cell_index, selected_cell_value],\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: dataframe_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import pandas as pd\n", "import numpy as np\n", "\n", "def update_dataframe():\n", " regular_df = pd.DataFrame(np.random.randint(1, 10, size=(5, 5)), columns=pd.Index([str(i) for i in range(5)]))\n", " wide_df = pd.DataFrame([\n", " [5, 22, 91, 17, 73, 38, 84, 46, 65, 10, 155, 122, 11, 144, 133],\n", " [81, 42, 13, 97, 33, 77, 59, 100, 29, 61, 213, 195, 142, 118, 127],\n", " [37, 71, 63, 102, 28, 94, 19, 55, 88, 44, 116, 139, 122, 150, 147],\n", " [104, 52, 49, 26, 83, 67, 31, 92, 79, 18, 241, 115, 159, 123, 137],\n", " [16, 95, 74, 68, 43, 101, 27, 85, 39, 57, 129, 148, 132, 111, 156]\n", " ], columns=pd.Index([f\"col_{i}\" for i in range(15)]))\n", " return regular_df, wide_df\n", "\n", "def clear_dataframes():\n", " regular_empty_df = pd.DataFrame([], columns=pd.Index([str(i) for i in range(5)]))\n", " wide_empty_df = pd.DataFrame([], columns=pd.Index([f\"col_{i}\" for i in range(15)]))\n", " return regular_empty_df, wide_empty_df\n", "\n", "def increment_select_counter(evt: gr.SelectData, count):\n", " count_val = 1 if count is None else count + 1\n", " return count_val, evt.index, evt.value\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Row():\n", " with gr.Column(scale=1):\n", " initial_regular_df = pd.DataFrame(np.zeros((5, 5), dtype=int), columns=pd.Index([str(i) for i in range(5)]))\n", "\n", " df = gr.Dataframe(\n", " value=initial_regular_df,\n", " interactive=True,\n", " label=\"Interactive Dataframe\",\n", " show_label=True,\n", " elem_id=\"dataframe\",\n", " show_search=\"filter\",\n", " show_copy_button=True,\n", " show_row_numbers=True,\n", " static_columns=[4]\n", " )\n", "\n", " with gr.Column(scale=1):\n", " initial_wide_df = pd.DataFrame(np.zeros((5, 15), dtype=int), columns=pd.Index([f\"col_{i}\" for i in range(15)]))\n", "\n", " df_view = gr.Dataframe(\n", " value=initial_wide_df,\n", " interactive=False,\n", " label=\"Non-Interactive View (Scroll Horizontally)\",\n", " show_label=True,\n", " show_search=\"search\",\n", " elem_id=\"non-interactive-dataframe\",\n", " show_copy_button=True,\n", " show_row_numbers=True,\n", " show_fullscreen_button=True,\n", " )\n", "\n", " tall_df_value = [\n", " [\"DeepSeek Coder\", 79.3],\n", " [\"Llama 3.3\", 68.9],\n", " [\"Qwen 2.5\", 61.9],\n", " [\"Gemma 2\", 59.5],\n", " [\"GPT 2\", 18.3],\n", " ]\n", "\n", " def get_display_value(values):\n", " display_values = []\n", " medals = [\"\ud83e\udd47\", \"\ud83e\udd48\", \"\ud83e\udd49\"]\n", " for i, row in enumerate(values):\n", " if i < 3:\n", " display_values.append([f\"{medals[i]} {row[0]}\", row[1]])\n", " else:\n", " display_values.append([row[0], row[1]])\n", " return display_values\n", "\n", " display_value = get_display_value(tall_df_value)\n", "\n", " tall_df_value = {\n", " \"data\": tall_df_value,\n", " \"headers\": [\"Model\", \"% Correct (LeetCode Hard)\"],\n", " \"metadata\": {\n", " \"display_value\": display_value\n", " }\n", " }\n", "\n", " with gr.Row():\n", " with gr.Column():\n", " df_tall = gr.Dataframe(\n", " value=tall_df_value,\n", " interactive=False,\n", " label=\"Tall Dataframe (Scroll Vertically)\",\n", " max_height=200,\n", " show_label=True,\n", " elem_id=\"dataframe_tall\",\n", " show_copy_button=True,\n", " show_row_numbers=True,\n", " show_search=\"search\",\n", " )\n", "\n", " df_tall_selected_cell_index = gr.Textbox(\n", " label=\"Tall dataframe selected cell index\", elem_id=\"tall_selected_cell_index\"\n", " )\n", " df_tall_selected_cell_value = gr.Textbox(\n", " label=\"Tall dataframe selected cell value\", elem_id=\"tall_selected_cell_value\"\n", " )\n", "\n", " with gr.Row():\n", " with gr.Column():\n", " update_btn = gr.Button(\"Update dataframe\", elem_id=\"update_btn\")\n", " clear_btn = gr.Button(\"Clear dataframe\", elem_id=\"clear_btn\")\n", "\n", " with gr.Row():\n", " change_events = gr.Number(\n", " value=0, label=\"Change events\", elem_id=\"change_events\"\n", " )\n", " input_events = gr.Number(value=0, label=\"Input events\", elem_id=\"input_events\")\n", " select_events = gr.Number(\n", " value=0, label=\"Select events\", elem_id=\"select_events\"\n", " )\n", "\n", " with gr.Row():\n", " selected_cell_index = gr.Textbox(\n", " label=\"Selected cell index\", elem_id=\"selected_cell_index\"\n", " )\n", " selected_cell_value = gr.Textbox(\n", " label=\"Selected cell value\", elem_id=\"selected_cell_value\"\n", " )\n", "\n", " update_btn.click(fn=update_dataframe, outputs=[df, df_view])\n", " clear_btn.click(fn=clear_dataframes, outputs=[df, df_view, df_tall])\n", " df.change(fn=lambda x: x + 1, inputs=[change_events], outputs=[change_events])\n", " df.input(fn=lambda x: x + 1, inputs=[input_events], outputs=[input_events])\n", " df.select(\n", " fn=increment_select_counter,\n", " inputs=[select_events],\n", " outputs=[select_events, selected_cell_index, selected_cell_value],\n", " )\n", "\n", " df_tall.select(\n", " fn=increment_select_counter,\n", " inputs=[select_events],\n", " outputs=[select_events, df_tall_selected_cell_index, df_tall_selected_cell_value],\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py CHANGED
@@ -83,16 +83,25 @@ with gr.Blocks() as demo:
83
  }
84
 
85
  with gr.Row():
86
- df_tall = gr.Dataframe(
87
- value=tall_df_value,
88
- interactive=False,
89
- label="Tall Dataframe (Scroll Vertically)",
90
- show_label=True,
91
- elem_id="dataframe_tall",
92
- show_copy_button=True,
93
- show_row_numbers=True,
94
- max_height=300,
95
- )
 
 
 
 
 
 
 
 
 
96
 
97
  with gr.Row():
98
  with gr.Column():
@@ -126,5 +135,11 @@ with gr.Blocks() as demo:
126
  outputs=[select_events, selected_cell_index, selected_cell_value],
127
  )
128
 
 
 
 
 
 
 
129
  if __name__ == "__main__":
130
  demo.launch()
 
83
  }
84
 
85
  with gr.Row():
86
+ with gr.Column():
87
+ df_tall = gr.Dataframe(
88
+ value=tall_df_value,
89
+ interactive=False,
90
+ label="Tall Dataframe (Scroll Vertically)",
91
+ max_height=200,
92
+ show_label=True,
93
+ elem_id="dataframe_tall",
94
+ show_copy_button=True,
95
+ show_row_numbers=True,
96
+ show_search="search",
97
+ )
98
+
99
+ df_tall_selected_cell_index = gr.Textbox(
100
+ label="Tall dataframe selected cell index", elem_id="tall_selected_cell_index"
101
+ )
102
+ df_tall_selected_cell_value = gr.Textbox(
103
+ label="Tall dataframe selected cell value", elem_id="tall_selected_cell_value"
104
+ )
105
 
106
  with gr.Row():
107
  with gr.Column():
 
135
  outputs=[select_events, selected_cell_index, selected_cell_value],
136
  )
137
 
138
+ df_tall.select(
139
+ fn=increment_select_counter,
140
+ inputs=[select_events],
141
+ outputs=[select_events, df_tall_selected_cell_index, df_tall_selected_cell_value],
142
+ )
143
+
144
  if __name__ == "__main__":
145
  demo.launch()