Spaces:
Running
Running
Upload with huggingface_hub
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
-
sdk_version: 3.
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
---
|
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 3.17.0
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
---
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: fake_diffusion\n", "### This demo uses a fake model to showcase iterative output. The Image output will update every time a generator is returned until the final image.\n", " "]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "import time\n", "\n", "# define core fn, which returns a generator {steps} times before returning the image\n", "def fake_diffusion(steps):\n", " for _ in range(steps):\n", " time.sleep(1)\n", " image = np.random.random((600, 600, 3))\n", " yield image\n", "\n", " image = \"https://i.picsum.photos/id/867/600/600.jpg?hmac=qE7QFJwLmlE_WKI7zMH6SgH5iY5fx8ec6ZJQBwKRT44\"
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: fake_diffusion\n", "### This demo uses a fake model to showcase iterative output. The Image output will update every time a generator is returned until the final image.\n", " "]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy "]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import numpy as np\n", "import time\n", "\n", "# define core fn, which returns a generator {steps} times before returning the image\n", "def fake_diffusion(steps):\n", " for _ in range(steps):\n", " time.sleep(1)\n", " image = np.random.random((600, 600, 3))\n", " yield image\n", "\n", " image = \"https://i.picsum.photos/id/867/600/600.jpg?hmac=qE7QFJwLmlE_WKI7zMH6SgH5iY5fx8ec6ZJQBwKRT44\"\n", " yield image\n", "\n", "\n", "demo = gr.Interface(fake_diffusion, inputs=gr.Slider(1, 10, 3), outputs=\"image\")\n", "\n", "# define queue - required for generators\n", "demo.queue()\n", "\n", "demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
@@ -9,14 +9,13 @@ def fake_diffusion(steps):
|
|
9 |
image = np.random.random((600, 600, 3))
|
10 |
yield image
|
11 |
|
12 |
-
image = "https://i.picsum.photos/id/867/600/600.jpg?hmac=qE7QFJwLmlE_WKI7zMH6SgH5iY5fx8ec6ZJQBwKRT44"
|
13 |
yield image
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
outputs="image")
|
18 |
|
19 |
# define queue - required for generators
|
20 |
demo.queue()
|
21 |
|
22 |
-
demo.launch()
|
|
|
9 |
image = np.random.random((600, 600, 3))
|
10 |
yield image
|
11 |
|
12 |
+
image = "https://i.picsum.photos/id/867/600/600.jpg?hmac=qE7QFJwLmlE_WKI7zMH6SgH5iY5fx8ec6ZJQBwKRT44"
|
13 |
yield image
|
14 |
|
15 |
+
|
16 |
+
demo = gr.Interface(fake_diffusion, inputs=gr.Slider(1, 10, 3), outputs="image")
|
|
|
17 |
|
18 |
# define queue - required for generators
|
19 |
demo.queue()
|
20 |
|
21 |
+
demo.launch()
|