|
import gradio as gr |
|
from vega_datasets import data |
|
|
|
stocks = data.stocks() |
|
gapminder = data.gapminder() |
|
gapminder = gapminder.loc[ |
|
gapminder.country.isin(["Argentina", "Australia", "Afghanistan"]) |
|
] |
|
climate = data.climate() |
|
seattle_weather = data.seattle_weather() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def line_plot_fn(dataset): |
|
if dataset == "stocks": |
|
return gr.LinePlot( |
|
stocks, |
|
x="date", |
|
y="price", |
|
color="symbol", |
|
color_legend_position="bottom", |
|
title="Stock Prices", |
|
tooltip=["date", "price", "symbol"], |
|
height=300, |
|
width=500, |
|
) |
|
elif dataset == "climate": |
|
return gr.LinePlot( |
|
climate, |
|
x="DATE", |
|
y="HLY-TEMP-NORMAL", |
|
y_lim=[250, 500], |
|
title="Climate", |
|
tooltip=["DATE", "HLY-TEMP-NORMAL"], |
|
height=300, |
|
width=500, |
|
) |
|
elif dataset == "seattle_weather": |
|
return gr.LinePlot( |
|
seattle_weather, |
|
x="date", |
|
y="temp_min", |
|
tooltip=["weather", "date"], |
|
overlay_point=True, |
|
title="Seattle Weather", |
|
height=300, |
|
width=500, |
|
) |
|
elif dataset == "gapminder": |
|
return gr.LinePlot( |
|
gapminder, |
|
x="year", |
|
y="life_expect", |
|
color="country", |
|
title="Life expectancy for countries", |
|
stroke_dash="cluster", |
|
x_lim=[1950, 2010], |
|
tooltip=["country", "life_expect"], |
|
stroke_dash_legend_title="Country Cluster", |
|
height=300, |
|
width=500, |
|
) |
|
|
|
with gr.Blocks() as line_plot: |
|
with gr.Row(): |
|
with gr.Column(): |
|
dataset = gr.Dropdown( |
|
choices=["stocks", "climate", "seattle_weather", "gapminder"], |
|
value="stocks", |
|
) |
|
with gr.Column(): |
|
plot = gr.LinePlot() |
|
dataset.change(line_plot_fn, inputs=dataset, outputs=plot) |
|
line_plot.load(fn=line_plot_fn, inputs=dataset, outputs=plot) |
|
|
|
if __name__ == "__main__": |
|
line_plot.launch() |
|
|