Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -1,12 +1,11 @@
|
|
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.36.0
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
|
2 |
---
|
3 |
+
title: line_plot
|
4 |
+
emoji: 🔥
|
5 |
+
colorFrom: indigo
|
6 |
+
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
sdk_version: 3.36.0
|
9 |
+
app_file: run.py
|
10 |
pinned: false
|
11 |
---
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
vega_datasets
|
2 |
+
pandas
|
run.ipynb
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: line_plot"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio vega_datasets pandas"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from vega_datasets import data\n", "\n", "stocks = data.stocks()\n", "gapminder = data.gapminder()\n", "gapminder = gapminder.loc[\n", " gapminder.country.isin([\"Argentina\", \"Australia\", \"Afghanistan\"])\n", "]\n", "climate = data.climate()\n", "seattle_weather = data.seattle_weather()\n", "\n", "## Or generate your own fake data, here's an example for stocks:\n", "#\n", "# import pandas as pd\n", "# import random\n", "#\n", "# stocks = pd.DataFrame(\n", "# {\n", "# \"symbol\": [\n", "# random.choice(\n", "# [\n", "# \"MSFT\",\n", "# \"AAPL\",\n", "# \"AMZN\",\n", "# \"IBM\",\n", "# \"GOOG\",\n", "# ]\n", "# )\n", "# for _ in range(120)\n", "# ],\n", "# \"date\": [\n", "# pd.Timestamp(year=2000 + i, month=j, day=1)\n", "# for i in range(10)\n", "# for j in range(1, 13)\n", "# ],\n", "# \"price\": [random.randint(10, 200) for _ in range(120)],\n", "# }\n", "# )\n", "\n", "\n", "def line_plot_fn(dataset):\n", " if dataset == \"stocks\":\n", " return gr.LinePlot.update(\n", " stocks,\n", " x=\"date\",\n", " y=\"price\",\n", " color=\"symbol\",\n", " color_legend_position=\"bottom\",\n", " title=\"Stock Prices\",\n", " tooltip=[\"date\", \"price\", \"symbol\"],\n", " height=300,\n", " width=500,\n", " )\n", " elif dataset == \"climate\":\n", " return gr.LinePlot.update(\n", " climate,\n", " x=\"DATE\",\n", " y=\"HLY-TEMP-NORMAL\",\n", " y_lim=[250, 500],\n", " title=\"Climate\",\n", " tooltip=[\"DATE\", \"HLY-TEMP-NORMAL\"],\n", " height=300,\n", " width=500,\n", " )\n", " elif dataset == \"seattle_weather\":\n", " return gr.LinePlot.update(\n", " seattle_weather,\n", " x=\"date\",\n", " y=\"temp_min\",\n", " tooltip=[\"weather\", \"date\"],\n", " overlay_point=True,\n", " title=\"Seattle Weather\",\n", " height=300,\n", " width=500,\n", " )\n", " elif dataset == \"gapminder\":\n", " return gr.LinePlot.update(\n", " gapminder,\n", " x=\"year\",\n", " y=\"life_expect\",\n", " color=\"country\",\n", " title=\"Life expectancy for countries\",\n", " stroke_dash=\"cluster\",\n", " x_lim=[1950, 2010],\n", " tooltip=[\"country\", \"life_expect\"],\n", " stroke_dash_legend_title=\"Country Cluster\",\n", " height=300,\n", " width=500,\n", " )\n", "\n", "\n", "with gr.Blocks() as line_plot:\n", " with gr.Row():\n", " with gr.Column():\n", " dataset = gr.Dropdown(\n", " choices=[\"stocks\", \"climate\", \"seattle_weather\", \"gapminder\"],\n", " value=\"stocks\",\n", " )\n", " with gr.Column():\n", " plot = gr.LinePlot()\n", " dataset.change(line_plot_fn, inputs=dataset, outputs=plot)\n", " line_plot.load(fn=line_plot_fn, inputs=dataset, outputs=plot)\n", "\n", "\n", "if __name__ == \"__main__\":\n", " line_plot.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from vega_datasets import data
|
3 |
+
|
4 |
+
stocks = data.stocks()
|
5 |
+
gapminder = data.gapminder()
|
6 |
+
gapminder = gapminder.loc[
|
7 |
+
gapminder.country.isin(["Argentina", "Australia", "Afghanistan"])
|
8 |
+
]
|
9 |
+
climate = data.climate()
|
10 |
+
seattle_weather = data.seattle_weather()
|
11 |
+
|
12 |
+
## Or generate your own fake data, here's an example for stocks:
|
13 |
+
#
|
14 |
+
# import pandas as pd
|
15 |
+
# import random
|
16 |
+
#
|
17 |
+
# stocks = pd.DataFrame(
|
18 |
+
# {
|
19 |
+
# "symbol": [
|
20 |
+
# random.choice(
|
21 |
+
# [
|
22 |
+
# "MSFT",
|
23 |
+
# "AAPL",
|
24 |
+
# "AMZN",
|
25 |
+
# "IBM",
|
26 |
+
# "GOOG",
|
27 |
+
# ]
|
28 |
+
# )
|
29 |
+
# for _ in range(120)
|
30 |
+
# ],
|
31 |
+
# "date": [
|
32 |
+
# pd.Timestamp(year=2000 + i, month=j, day=1)
|
33 |
+
# for i in range(10)
|
34 |
+
# for j in range(1, 13)
|
35 |
+
# ],
|
36 |
+
# "price": [random.randint(10, 200) for _ in range(120)],
|
37 |
+
# }
|
38 |
+
# )
|
39 |
+
|
40 |
+
|
41 |
+
def line_plot_fn(dataset):
|
42 |
+
if dataset == "stocks":
|
43 |
+
return gr.LinePlot.update(
|
44 |
+
stocks,
|
45 |
+
x="date",
|
46 |
+
y="price",
|
47 |
+
color="symbol",
|
48 |
+
color_legend_position="bottom",
|
49 |
+
title="Stock Prices",
|
50 |
+
tooltip=["date", "price", "symbol"],
|
51 |
+
height=300,
|
52 |
+
width=500,
|
53 |
+
)
|
54 |
+
elif dataset == "climate":
|
55 |
+
return gr.LinePlot.update(
|
56 |
+
climate,
|
57 |
+
x="DATE",
|
58 |
+
y="HLY-TEMP-NORMAL",
|
59 |
+
y_lim=[250, 500],
|
60 |
+
title="Climate",
|
61 |
+
tooltip=["DATE", "HLY-TEMP-NORMAL"],
|
62 |
+
height=300,
|
63 |
+
width=500,
|
64 |
+
)
|
65 |
+
elif dataset == "seattle_weather":
|
66 |
+
return gr.LinePlot.update(
|
67 |
+
seattle_weather,
|
68 |
+
x="date",
|
69 |
+
y="temp_min",
|
70 |
+
tooltip=["weather", "date"],
|
71 |
+
overlay_point=True,
|
72 |
+
title="Seattle Weather",
|
73 |
+
height=300,
|
74 |
+
width=500,
|
75 |
+
)
|
76 |
+
elif dataset == "gapminder":
|
77 |
+
return gr.LinePlot.update(
|
78 |
+
gapminder,
|
79 |
+
x="year",
|
80 |
+
y="life_expect",
|
81 |
+
color="country",
|
82 |
+
title="Life expectancy for countries",
|
83 |
+
stroke_dash="cluster",
|
84 |
+
x_lim=[1950, 2010],
|
85 |
+
tooltip=["country", "life_expect"],
|
86 |
+
stroke_dash_legend_title="Country Cluster",
|
87 |
+
height=300,
|
88 |
+
width=500,
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
+
with gr.Blocks() as line_plot:
|
93 |
+
with gr.Row():
|
94 |
+
with gr.Column():
|
95 |
+
dataset = gr.Dropdown(
|
96 |
+
choices=["stocks", "climate", "seattle_weather", "gapminder"],
|
97 |
+
value="stocks",
|
98 |
+
)
|
99 |
+
with gr.Column():
|
100 |
+
plot = gr.LinePlot()
|
101 |
+
dataset.change(line_plot_fn, inputs=dataset, outputs=plot)
|
102 |
+
line_plot.load(fn=line_plot_fn, inputs=dataset, outputs=plot)
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == "__main__":
|
106 |
+
line_plot.launch()
|