Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import torchaudio # type: ignore | |
from timeit import default_timer as timer | |
from data_setups import audio_preprocess, resample # type: ignore | |
import gdown # type: ignore | |
url = 'https://drive.google.com/uc?id=1X5CR18u0I-ZOi_8P0cNptCe5JGk9Ro0C' | |
output = 'piano.wav' | |
gdown.download(url, output, quiet=False) | |
url = 'https://drive.google.com/uc?id=1W-8HwmGR5SiyDbUcGAZYYDKdCIst07__' | |
output= 'torch_efficientnet_fold2_CNN.pth' | |
gdown.download(url, output, quiet=False) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
SAMPLE_RATE = 44100 | |
AUDIO_LEN = 2.90 | |
model = torch.load("torch_efficientnet_fold2_CNN.pth", map_location=torch.device('cpu')) | |
LABELS = [ | |
"Cello", "Clarinet", "Flute", "Acoustic Guitar", "Electric Guitar", "Organ", "Piano", "Saxophone", "Trumpet", "Violin", "Voice" | |
] | |
example_list = [ | |
["piano.wav"] | |
] | |
def predict(audio_path): | |
start_time = timer() | |
wavform, sample_rate = torchaudio.load(audio_path) | |
wav = resample(wavform, sample_rate, SAMPLE_RATE) | |
if len(wav) > int(AUDIO_LEN * SAMPLE_RATE): | |
wav = wav[:int(AUDIO_LEN * SAMPLE_RATE)] | |
else: | |
print(f"input length {len(wav)} too small!, need over {int(AUDIO_LEN * SAMPLE_RATE)}") | |
return | |
img = audio_preprocess(wav, SAMPLE_RATE).unsqueeze(0) | |
model.eval() | |
with torch.inference_mode(): | |
pred_probs = torch.softmax(model(img), dim=1) | |
pred_labels_and_probs = {LABELS[i]: float(pred_probs[0][i]) for i in range(len(LABELS))} | |
pred_time = round(timer() - start_time, 5) | |
return pred_labels_and_probs, pred_time | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Audio(type="filepath"), | |
outputs=[gr.Label(num_top_classes=11, label="Predictions"), | |
gr.Number(label="Prediction time (s)")], | |
examples=example_list, | |
cache_examples=False | |
) | |
demo.launch(debug=False) | |