Spaces:
Runtime error
Runtime error
| import bisect | |
| import functools | |
| import os | |
| import warnings | |
| from typing import List, NamedTuple, Optional | |
| import numpy as np | |
| # The code below is adapted from https://github.com/snakers4/silero-vad. | |
| class VadOptions(NamedTuple): | |
| """VAD options. | |
| Attributes: | |
| threshold: Speech threshold. Silero VAD outputs speech probabilities for each audio chunk, | |
| probabilities ABOVE this value are considered as SPEECH. It is better to tune this | |
| parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets. | |
| min_speech_duration_ms: Final speech chunks shorter min_speech_duration_ms are thrown out. | |
| max_speech_duration_s: Maximum duration of speech chunks in seconds. Chunks longer | |
| than max_speech_duration_s will be split at the timestamp of the last silence that | |
| lasts more than 100ms (if any), to prevent aggressive cutting. Otherwise, they will be | |
| split aggressively just before max_speech_duration_s. | |
| min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms | |
| before separating it | |
| window_size_samples: Audio chunks of window_size_samples size are fed to the silero VAD model. | |
| WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate. | |
| Values other than these may affect model performance!! | |
| speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side | |
| """ | |
| threshold: float = 0.5 | |
| min_speech_duration_ms: int = 250 | |
| max_speech_duration_s: float = float("inf") | |
| min_silence_duration_ms: int = 2000 | |
| window_size_samples: int = 1024 | |
| speech_pad_ms: int = 400 | |
| def get_speech_timestamps( | |
| audio: np.ndarray, | |
| vad_options: Optional[VadOptions] = None, | |
| **kwargs, | |
| ) -> List[dict]: | |
| """This method is used for splitting long audios into speech chunks using silero VAD. | |
| Args: | |
| audio: One dimensional float array. | |
| vad_options: Options for VAD processing. | |
| kwargs: VAD options passed as keyword arguments for backward compatibility. | |
| Returns: | |
| List of dicts containing begin and end samples of each speech chunk. | |
| """ | |
| if vad_options is None: | |
| vad_options = VadOptions(**kwargs) | |
| threshold = vad_options.threshold | |
| min_speech_duration_ms = vad_options.min_speech_duration_ms | |
| max_speech_duration_s = vad_options.max_speech_duration_s | |
| min_silence_duration_ms = vad_options.min_silence_duration_ms | |
| window_size_samples = vad_options.window_size_samples | |
| speech_pad_ms = vad_options.speech_pad_ms | |
| if window_size_samples not in [512, 1024, 1536]: | |
| warnings.warn( | |
| "Unusual window_size_samples! Supported window_size_samples:\n" | |
| " - [512, 1024, 1536] for 16000 sampling_rate" | |
| ) | |
| sampling_rate = 16000 | |
| min_speech_samples = sampling_rate * min_speech_duration_ms / 1000 | |
| speech_pad_samples = sampling_rate * speech_pad_ms / 1000 | |
| max_speech_samples = ( | |
| sampling_rate * max_speech_duration_s | |
| - window_size_samples | |
| - 2 * speech_pad_samples | |
| ) | |
| min_silence_samples = sampling_rate * min_silence_duration_ms / 1000 | |
| min_silence_samples_at_max_speech = sampling_rate * 98 / 1000 | |
| audio_length_samples = len(audio) | |
| model = get_vad_model() | |
| state = model.get_initial_state(batch_size=1) | |
| speech_probs = [] | |
| for current_start_sample in range(0, audio_length_samples, window_size_samples): | |
| chunk = audio[current_start_sample : current_start_sample + window_size_samples] | |
| if len(chunk) < window_size_samples: | |
| chunk = np.pad(chunk, (0, int(window_size_samples - len(chunk)))) | |
| speech_prob, state = model(chunk, state, sampling_rate) | |
| speech_probs.append(speech_prob) | |
| triggered = False | |
| speeches = [] | |
| current_speech = {} | |
| neg_threshold = threshold - 0.15 | |
| # to save potential segment end (and tolerate some silence) | |
| temp_end = 0 | |
| # to save potential segment limits in case of maximum segment size reached | |
| prev_end = next_start = 0 | |
| for i, speech_prob in enumerate(speech_probs): | |
| if (speech_prob >= threshold) and temp_end: | |
| temp_end = 0 | |
| if next_start < prev_end: | |
| next_start = window_size_samples * i | |
| if (speech_prob >= threshold) and not triggered: | |
| triggered = True | |
| current_speech["start"] = window_size_samples * i | |
| continue | |
| if ( | |
| triggered | |
| and (window_size_samples * i) - current_speech["start"] > max_speech_samples | |
| ): | |
| if prev_end: | |
| current_speech["end"] = prev_end | |
| speeches.append(current_speech) | |
| current_speech = {} | |
| # previously reached silence (< neg_thres) and is still not speech (< thres) | |
| if next_start < prev_end: | |
| triggered = False | |
| else: | |
| current_speech["start"] = next_start | |
| prev_end = next_start = temp_end = 0 | |
| else: | |
| current_speech["end"] = window_size_samples * i | |
| speeches.append(current_speech) | |
| current_speech = {} | |
| prev_end = next_start = temp_end = 0 | |
| triggered = False | |
| continue | |
| if (speech_prob < neg_threshold) and triggered: | |
| if not temp_end: | |
| temp_end = window_size_samples * i | |
| # condition to avoid cutting in very short silence | |
| if (window_size_samples * i) - temp_end > min_silence_samples_at_max_speech: | |
| prev_end = temp_end | |
| if (window_size_samples * i) - temp_end < min_silence_samples: | |
| continue | |
| else: | |
| current_speech["end"] = temp_end | |
| if ( | |
| current_speech["end"] - current_speech["start"] | |
| ) > min_speech_samples: | |
| speeches.append(current_speech) | |
| current_speech = {} | |
| prev_end = next_start = temp_end = 0 | |
| triggered = False | |
| continue | |
| if ( | |
| current_speech | |
| and (audio_length_samples - current_speech["start"]) > min_speech_samples | |
| ): | |
| current_speech["end"] = audio_length_samples | |
| speeches.append(current_speech) | |
| for i, speech in enumerate(speeches): | |
| if i == 0: | |
| speech["start"] = int(max(0, speech["start"] - speech_pad_samples)) | |
| if i != len(speeches) - 1: | |
| silence_duration = speeches[i + 1]["start"] - speech["end"] | |
| if silence_duration < 2 * speech_pad_samples: | |
| speech["end"] += int(silence_duration // 2) | |
| speeches[i + 1]["start"] = int( | |
| max(0, speeches[i + 1]["start"] - silence_duration // 2) | |
| ) | |
| else: | |
| speech["end"] = int( | |
| min(audio_length_samples, speech["end"] + speech_pad_samples) | |
| ) | |
| speeches[i + 1]["start"] = int( | |
| max(0, speeches[i + 1]["start"] - speech_pad_samples) | |
| ) | |
| else: | |
| speech["end"] = int( | |
| min(audio_length_samples, speech["end"] + speech_pad_samples) | |
| ) | |
| return speeches | |
| def collect_chunks(audio: np.ndarray, chunks: List[dict]) -> np.ndarray: | |
| """Collects and concatenates audio chunks.""" | |
| if not chunks: | |
| return np.array([], dtype=np.float32) | |
| return np.concatenate([audio[chunk["start"] : chunk["end"]] for chunk in chunks]) | |
| class SpeechTimestampsMap: | |
| """Helper class to restore original speech timestamps.""" | |
| def __init__(self, chunks: List[dict], sampling_rate: int, time_precision: int = 2): | |
| self.sampling_rate = sampling_rate | |
| self.time_precision = time_precision | |
| self.chunk_end_sample = [] | |
| self.total_silence_before = [] | |
| previous_end = 0 | |
| silent_samples = 0 | |
| for chunk in chunks: | |
| silent_samples += chunk["start"] - previous_end | |
| previous_end = chunk["end"] | |
| self.chunk_end_sample.append(chunk["end"] - silent_samples) | |
| self.total_silence_before.append(silent_samples / sampling_rate) | |
| def get_original_time( | |
| self, | |
| time: float, | |
| chunk_index: Optional[int] = None, | |
| ) -> float: | |
| if chunk_index is None: | |
| chunk_index = self.get_chunk_index(time) | |
| total_silence_before = self.total_silence_before[chunk_index] | |
| return round(total_silence_before + time, self.time_precision) | |
| def get_chunk_index(self, time: float) -> int: | |
| sample = int(time * self.sampling_rate) | |
| return min( | |
| bisect.bisect(self.chunk_end_sample, sample), | |
| len(self.chunk_end_sample) - 1, | |
| ) | |
| def get_vad_model(): | |
| """Returns the VAD model instance.""" | |
| asset_dir = os.path.join(os.path.dirname(__file__), "assets") | |
| path = os.path.join(asset_dir, "silero_vad.onnx") | |
| return SileroVADModel(path) | |
| class SileroVADModel: | |
| def __init__(self, path): | |
| try: | |
| import onnxruntime | |
| except ImportError as e: | |
| raise RuntimeError( | |
| "Applying the VAD filter requires the onnxruntime package" | |
| ) from e | |
| opts = onnxruntime.SessionOptions() | |
| opts.inter_op_num_threads = 1 | |
| opts.intra_op_num_threads = 1 | |
| opts.log_severity_level = 4 | |
| self.session = onnxruntime.InferenceSession( | |
| path, | |
| providers=["CPUExecutionProvider"], | |
| sess_options=opts, | |
| ) | |
| def get_initial_state(self, batch_size: int): | |
| h = np.zeros((2, batch_size, 64), dtype=np.float32) | |
| c = np.zeros((2, batch_size, 64), dtype=np.float32) | |
| return h, c | |
| def __call__(self, x, state, sr: int): | |
| if len(x.shape) == 1: | |
| x = np.expand_dims(x, 0) | |
| if len(x.shape) > 2: | |
| raise ValueError( | |
| f"Too many dimensions for input audio chunk {len(x.shape)}" | |
| ) | |
| if sr / x.shape[1] > 31.25: | |
| raise ValueError("Input audio chunk is too short") | |
| h, c = state | |
| ort_inputs = { | |
| "input": x, | |
| "h": h, | |
| "c": c, | |
| "sr": np.array(sr, dtype="int64"), | |
| } | |
| out, h, c = self.session.run(None, ort_inputs) | |
| state = (h, c) | |
| return out, state | |