Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- README.md +1 -1
- requirements.txt +3 -2
- run.ipynb +1 -1
README.md
CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
-
sdk_version:
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 5.0.0
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
-
gradio-client @ git+https://github.com/gradio-app/gradio@
|
2 |
-
https://gradio-pypi-previews.s3.amazonaws.com/
|
|
|
|
1 |
+
gradio-client @ git+https://github.com/gradio-app/gradio@bbf9ba7e997022960c621f72baa891185bd03732#subdirectory=client/python
|
2 |
+
https://gradio-pypi-previews.s3.amazonaws.com/bbf9ba7e997022960c621f72baa891185bd03732/gradio-5.0.0-py3-none-any.whl
|
3 |
+
numpy
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: sepia_filter"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import numpy as np\n", "import gradio as gr\n", "\n", "def sepia(input_img):\n", " sepia_filter = np.array([\n", " [0.393, 0.769, 0.189],\n", " [0.349, 0.686, 0.168],\n", " [0.272, 0.534, 0.131]\n", " ])\n", " sepia_img = input_img.dot(sepia_filter.T)\n", " sepia_img /= sepia_img.max()\n", " return sepia_img\n", "\n", "demo = gr.Interface(sepia, gr.Image(), \"image\")\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: sepia_filter"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import numpy as np\n", "import gradio as gr\n", "\n", "def sepia(input_img):\n", " sepia_filter = np.array([\n", " [0.393, 0.769, 0.189],\n", " [0.349, 0.686, 0.168],\n", " [0.272, 0.534, 0.131]\n", " ])\n", " sepia_img = input_img.dot(sepia_filter.T)\n", " sepia_img /= sepia_img.max()\n", " return sepia_img\n", "\n", "demo = gr.Interface(sepia, gr.Image(), \"image\")\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|