aliabd HF Staff commited on
Commit
b76c64e
·
1 Parent(s): 43d22e1

Upload with huggingface_hub

Browse files
Files changed (3) hide show
  1. requirements.txt +1 -1
  2. run.ipynb +1 -1
  3. run.py +0 -3
requirements.txt CHANGED
@@ -3,4 +3,4 @@ transformers
3
  nvidia-ml-py3
4
  ftfy
5
  torch
6
- https://gradio-main-build.s3.amazonaws.com/96ef802fbde6b6060f6e26f30b70955533acda4b/gradio-3.24.1-py3-none-any.whl
 
3
  nvidia-ml-py3
4
  ftfy
5
  torch
6
+ https://gradio-main-build.s3.amazonaws.com/ef3862e075441c1131bd9e07a20dbb8622ad0a1e/gradio-3.24.1-py3-none-any.whl
run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: stable-diffusion\n", "### Note: This is a simplified version of the code needed to create the Stable Diffusion demo. See full code here: https://hf.co/spaces/stabilityai/stable-diffusion/tree/main\n", " "]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio diffusers transformers nvidia-ml-py3 ftfy torch"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import torch\n", "from torch import autocast\n", "from diffusers import StableDiffusionPipeline\n", "from datasets import load_dataset\n", "from PIL import Image \n", "import re\n", "import os\n", "\n", "auth_token = os.getenv(\"auth_token\")\n", "model_id = \"CompVis/stable-diffusion-v1-4\"\n", "device = \"cpu\"\n", "pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=auth_token, revision=\"fp16\", torch_dtype=torch.float16)\n", "pipe = pipe.to(device)\n", "\n", "def infer(prompt, samples, steps, scale, seed): \n", " generator = torch.Generator(device=device).manual_seed(seed)\n", " images_list = pipe(\n", " [prompt] * samples,\n", " num_inference_steps=steps,\n", " guidance_scale=scale,\n", " generator=generator,\n", " )\n", " images = []\n", " safe_image = Image.open(r\"unsafe.png\")\n", " for i, image in enumerate(images_list[\"sample\"]):\n", " if(images_list[\"nsfw_content_detected\"][i]):\n", " images.append(safe_image)\n", " else:\n", " images.append(image)\n", " return images\n", " \n", "\n", "\n", "block = gr.Blocks()\n", "\n", "with block:\n", " with gr.Group():\n", " with gr.Box():\n", " with gr.Row().style(mobile_collapse=False, equal_height=True):\n", " text = gr.Textbox(\n", " label=\"Enter your prompt\",\n", " show_label=False,\n", " max_lines=1,\n", " placeholder=\"Enter your prompt\",\n", " ).style(\n", " border=(True, False, True, True),\n", " rounded=(True, False, False, True),\n", " container=False,\n", " )\n", " btn = gr.Button(\"Generate image\").style(\n", " margin=False,\n", " rounded=(False, True, True, False),\n", " )\n", " gallery = gr.Gallery(\n", " label=\"Generated images\", show_label=False, elem_id=\"gallery\"\n", " ).style(grid=[2], height=\"auto\")\n", "\n", " advanced_button = gr.Button(\"Advanced options\", elem_id=\"advanced-btn\")\n", "\n", " with gr.Row(elem_id=\"advanced-options\"):\n", " samples = gr.Slider(label=\"Images\", minimum=1, maximum=4, value=4, step=1)\n", " steps = gr.Slider(label=\"Steps\", minimum=1, maximum=50, value=45, step=1)\n", " scale = gr.Slider(\n", " label=\"Guidance Scale\", minimum=0, maximum=50, value=7.5, step=0.1\n", " )\n", " seed = gr.Slider(\n", " label=\"Seed\",\n", " minimum=0,\n", " maximum=2147483647,\n", " step=1,\n", " randomize=True,\n", " )\n", " text.submit(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)\n", " btn.click(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)\n", " advanced_button.click(\n", " None,\n", " [],\n", " text,\n", " )\n", " \n", "block.launch()"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: stable-diffusion\n", "### Note: This is a simplified version of the code needed to create the Stable Diffusion demo. See full code here: https://hf.co/spaces/stabilityai/stable-diffusion/tree/main\n", " "]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio diffusers transformers nvidia-ml-py3 ftfy torch"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import torch\n", "from diffusers import StableDiffusionPipeline\n", "from PIL import Image \n", "import os\n", "\n", "auth_token = os.getenv(\"auth_token\")\n", "model_id = \"CompVis/stable-diffusion-v1-4\"\n", "device = \"cpu\"\n", "pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=auth_token, revision=\"fp16\", torch_dtype=torch.float16)\n", "pipe = pipe.to(device)\n", "\n", "def infer(prompt, samples, steps, scale, seed): \n", " generator = torch.Generator(device=device).manual_seed(seed)\n", " images_list = pipe(\n", " [prompt] * samples,\n", " num_inference_steps=steps,\n", " guidance_scale=scale,\n", " generator=generator,\n", " )\n", " images = []\n", " safe_image = Image.open(r\"unsafe.png\")\n", " for i, image in enumerate(images_list[\"sample\"]):\n", " if(images_list[\"nsfw_content_detected\"][i]):\n", " images.append(safe_image)\n", " else:\n", " images.append(image)\n", " return images\n", " \n", "\n", "\n", "block = gr.Blocks()\n", "\n", "with block:\n", " with gr.Group():\n", " with gr.Box():\n", " with gr.Row().style(mobile_collapse=False, equal_height=True):\n", " text = gr.Textbox(\n", " label=\"Enter your prompt\",\n", " show_label=False,\n", " max_lines=1,\n", " placeholder=\"Enter your prompt\",\n", " ).style(\n", " border=(True, False, True, True),\n", " rounded=(True, False, False, True),\n", " container=False,\n", " )\n", " btn = gr.Button(\"Generate image\").style(\n", " margin=False,\n", " rounded=(False, True, True, False),\n", " )\n", " gallery = gr.Gallery(\n", " label=\"Generated images\", show_label=False, elem_id=\"gallery\"\n", " ).style(grid=[2], height=\"auto\")\n", "\n", " advanced_button = gr.Button(\"Advanced options\", elem_id=\"advanced-btn\")\n", "\n", " with gr.Row(elem_id=\"advanced-options\"):\n", " samples = gr.Slider(label=\"Images\", minimum=1, maximum=4, value=4, step=1)\n", " steps = gr.Slider(label=\"Steps\", minimum=1, maximum=50, value=45, step=1)\n", " scale = gr.Slider(\n", " label=\"Guidance Scale\", minimum=0, maximum=50, value=7.5, step=0.1\n", " )\n", " seed = gr.Slider(\n", " label=\"Seed\",\n", " minimum=0,\n", " maximum=2147483647,\n", " step=1,\n", " randomize=True,\n", " )\n", " text.submit(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)\n", " btn.click(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)\n", " advanced_button.click(\n", " None,\n", " [],\n", " text,\n", " )\n", " \n", "block.launch()"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py CHANGED
@@ -1,10 +1,7 @@
1
  import gradio as gr
2
  import torch
3
- from torch import autocast
4
  from diffusers import StableDiffusionPipeline
5
- from datasets import load_dataset
6
  from PIL import Image
7
- import re
8
  import os
9
 
10
  auth_token = os.getenv("auth_token")
 
1
  import gradio as gr
2
  import torch
 
3
  from diffusers import StableDiffusionPipeline
 
4
  from PIL import Image
 
5
  import os
6
 
7
  auth_token = os.getenv("auth_token")