aliabd HF Staff commited on
Commit
1d0ea05
·
verified ·
1 Parent(s): e0488b5

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. requirements.txt +2 -2
  2. run.ipynb +1 -1
  3. run.py +0 -2
requirements.txt CHANGED
@@ -1,4 +1,4 @@
1
- gradio-client @ git+https://github.com/gradio-app/gradio@de997e67c9a7feb9e2eccebf92969366dbd67eba#subdirectory=client/python
2
- https://gradio-builds.s3.amazonaws.com/de997e67c9a7feb9e2eccebf92969366dbd67eba/gradio-4.39.0-py3-none-any.whl
3
  numpy
4
  matplotlib
 
1
+ gradio-client @ git+https://github.com/gradio-app/gradio@9b42ba8f1006c05d60a62450d3036ce0d6784f86#subdirectory=client/python
2
+ https://gradio-builds.s3.amazonaws.com/9b42ba8f1006c05d60a62450d3036ce0d6784f86/gradio-4.39.0-py3-none-any.whl
3
  numpy
4
  matplotlib
run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stock_forecast"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy matplotlib"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "import gradio as gr\n", "\n", "\n", "def plot_forecast(final_year, companies, noise, show_legend, point_style):\n", " start_year = 2020\n", " x = np.arange(start_year, final_year + 1)\n", " year_count = x.shape[0]\n", " plt_format = ({\"cross\": \"X\", \"line\": \"-\", \"circle\": \"o--\"})[point_style]\n", " fig = plt.figure()\n", " ax = fig.add_subplot(111)\n", " for i, company in enumerate(companies):\n", " series = np.arange(0, year_count, dtype=float)\n", " series = series**2 * (i + 1)\n", " series += np.random.rand(year_count) * noise\n", " ax.plot(x, series, plt_format)\n", " if show_legend:\n", " plt.legend(companies)\n", " return fig\n", "\n", "\n", "demo = gr.Interface(\n", " plot_forecast,\n", " [\n", " gr.Radio([2025, 2030, 2035, 2040], label=\"Project to:\"),\n", " gr.CheckboxGroup([\"Google\", \"Microsoft\", \"Gradio\"], label=\"Company Selection\"),\n", " gr.Slider(1, 100, label=\"Noise Level\"),\n", " gr.Checkbox(label=\"Show Legend\"),\n", " gr.Dropdown([\"cross\", \"line\", \"circle\"], label=\"Style\"),\n", " ],\n", " gr.Plot(label=\"forecast\", format=\"png\"),\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stock_forecast"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio numpy matplotlib"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "import gradio as gr\n", "\n", "def plot_forecast(final_year, companies, noise, show_legend, point_style):\n", " start_year = 2020\n", " x = np.arange(start_year, final_year + 1)\n", " year_count = x.shape[0]\n", " plt_format = ({\"cross\": \"X\", \"line\": \"-\", \"circle\": \"o--\"})[point_style]\n", " fig = plt.figure()\n", " ax = fig.add_subplot(111)\n", " for i, company in enumerate(companies):\n", " series = np.arange(0, year_count, dtype=float)\n", " series = series**2 * (i + 1)\n", " series += np.random.rand(year_count) * noise\n", " ax.plot(x, series, plt_format)\n", " if show_legend:\n", " plt.legend(companies)\n", " return fig\n", "\n", "demo = gr.Interface(\n", " plot_forecast,\n", " [\n", " gr.Radio([2025, 2030, 2035, 2040], label=\"Project to:\"),\n", " gr.CheckboxGroup([\"Google\", \"Microsoft\", \"Gradio\"], label=\"Company Selection\"),\n", " gr.Slider(1, 100, label=\"Noise Level\"),\n", " gr.Checkbox(label=\"Show Legend\"),\n", " gr.Dropdown([\"cross\", \"line\", \"circle\"], label=\"Style\"),\n", " ],\n", " gr.Plot(label=\"forecast\", format=\"png\"),\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py CHANGED
@@ -3,7 +3,6 @@ import numpy as np
3
 
4
  import gradio as gr
5
 
6
-
7
  def plot_forecast(final_year, companies, noise, show_legend, point_style):
8
  start_year = 2020
9
  x = np.arange(start_year, final_year + 1)
@@ -20,7 +19,6 @@ def plot_forecast(final_year, companies, noise, show_legend, point_style):
20
  plt.legend(companies)
21
  return fig
22
 
23
-
24
  demo = gr.Interface(
25
  plot_forecast,
26
  [
 
3
 
4
  import gradio as gr
5
 
 
6
  def plot_forecast(final_year, companies, noise, show_legend, point_style):
7
  start_year = 2020
8
  x = np.arange(start_year, final_year + 1)
 
19
  plt.legend(companies)
20
  return fig
21
 
 
22
  demo = gr.Interface(
23
  plot_forecast,
24
  [