Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- requirements.txt +2 -2
- run.ipynb +1 -1
- run.py +1 -1
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
gradio-client @ git+https://github.com/gradio-app/gradio@
|
2 |
-
https://gradio-builds.s3.amazonaws.com/
|
3 |
torch
|
4 |
torchaudio
|
5 |
transformers
|
|
|
1 |
+
gradio-client @ git+https://github.com/gradio-app/gradio@76c175935019833baef709a5cf401d2263ca72ee#subdirectory=client/python
|
2 |
+
https://gradio-builds.s3.amazonaws.com/76c175935019833baef709a5cf401d2263ca72ee/gradio-4.38.1-py3-none-any.whl
|
3 |
torch
|
4 |
torchaudio
|
5 |
transformers
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stream_asr"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch torchaudio transformers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import pipeline\n", "import numpy as np\n", "\n", "transcriber = pipeline(\"automatic-speech-recognition\", model=\"openai/whisper-base.en\")\n", "\n", "def transcribe(stream, new_chunk):\n", " sr, y = new_chunk\n", " y = y.astype(np.float32)\n", " y /= np.max(np.abs(y))\n", "\n", " if stream is not None:\n", " stream = np.concatenate([stream, y])\n", " else:\n", " stream = y\n", " return stream, transcriber({\"sampling_rate\": sr, \"raw\": stream})[\"text\"]\n", "\n", "\n", "demo = gr.Interface(\n", " transcribe,\n", " [\"state\", gr.Audio(sources=[\"microphone\"], streaming=True)],\n", " [\"state\", \"text\"],\n", " live=True,\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: stream_asr"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch torchaudio transformers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import pipeline\n", "import numpy as np\n", "\n", "transcriber = pipeline(\"automatic-speech-recognition\", model=\"openai/whisper-base.en\")\n", "\n", "def transcribe(stream, new_chunk):\n", " sr, y = new_chunk\n", " y = y.astype(np.float32)\n", " y /= np.max(np.abs(y))\n", "\n", " if stream is not None:\n", " stream = np.concatenate([stream, y])\n", " else:\n", " stream = y\n", " return stream, transcriber({\"sampling_rate\": sr, \"raw\": stream})[\"text\"] # type: ignore\n", "\n", "\n", "demo = gr.Interface(\n", " transcribe,\n", " [\"state\", gr.Audio(sources=[\"microphone\"], streaming=True)],\n", " [\"state\", \"text\"],\n", " live=True,\n", ")\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
@@ -13,7 +13,7 @@ def transcribe(stream, new_chunk):
|
|
13 |
stream = np.concatenate([stream, y])
|
14 |
else:
|
15 |
stream = y
|
16 |
-
return stream, transcriber({"sampling_rate": sr, "raw": stream})["text"]
|
17 |
|
18 |
|
19 |
demo = gr.Interface(
|
|
|
13 |
stream = np.concatenate([stream, y])
|
14 |
else:
|
15 |
stream = y
|
16 |
+
return stream, transcriber({"sampling_rate": sr, "raw": stream})["text"] # type: ignore
|
17 |
|
18 |
|
19 |
demo = gr.Interface(
|