aliabd HF Staff commited on
Commit
9e98cb1
·
1 Parent(s): 4de21f9

Upload with huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +6 -7
  2. requirements.txt +3 -0
  3. run.ipynb +1 -0
  4. run.py +15 -0
README.md CHANGED
@@ -1,12 +1,11 @@
 
1
  ---
2
- title: Unified Demo Text Generation Main
3
- emoji: 🐨
4
  colorFrom: indigo
5
- colorTo: pink
6
  sdk: gradio
7
- sdk_version: 3.17.0
8
- app_file: app.py
9
  pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+
2
  ---
3
+ title: unified_demo_text_generation_main
4
+ emoji: 🔥
5
  colorFrom: indigo
6
+ colorTo: indigo
7
  sdk: gradio
8
+ sdk_version: 3.17.1
9
+ app_file: run.py
10
  pinned: false
11
  ---
 
 
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ transformers
3
+ https://gradio-main-build.s3.amazonaws.com/f3b3736596d9c0eb08613da1e19e5dc9b61286e3/gradio-3.17.1-py3-none-any.whl
run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: unified_demo_text_generation"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch transformers"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import pipeline\n", "\n", "generator = pipeline('text-generation', model = 'gpt2')\n", "\n", "def generate_text(text_prompt):\n", " response = generator(text_prompt, max_length = 30, num_return_sequences=5)\n", " return response[0]['generated_text']\n", "\n", "textbox = gr.Textbox()\n", "\n", "demo = gr.Interface(generate_text, textbox, textbox)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ generator = pipeline('text-generation', model = 'gpt2')
5
+
6
+ def generate_text(text_prompt):
7
+ response = generator(text_prompt, max_length = 30, num_return_sequences=5)
8
+ return response[0]['generated_text']
9
+
10
+ textbox = gr.Textbox()
11
+
12
+ demo = gr.Interface(generate_text, textbox, textbox)
13
+
14
+ if __name__ == "__main__":
15
+ demo.launch()