Upload folder using huggingface_hub
Browse files- requirements.txt +2 -2
- run.ipynb +1 -1
- run.py +1 -1
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
gradio-client @ git+https://github.com/gradio-app/gradio@
|
2 |
-
https://gradio-builds.s3.amazonaws.com/
|
3 |
torch
|
4 |
transformers
|
|
|
1 |
+
gradio-client @ git+https://github.com/gradio-app/gradio@890bae3942cc19f2b9040cfb6792adaa3cd478b0#subdirectory=client/python
|
2 |
+
https://gradio-builds.s3.amazonaws.com/890bae3942cc19f2b9040cfb6792adaa3cd478b0/gradio-4.40.0-py3-none-any.whl
|
3 |
torch
|
4 |
transformers
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: unified_demo_text_generation"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch transformers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import pipeline\n", "\n", "generator = pipeline('text-generation', model = 'gpt2')\n", "\n", "def generate_text(text_prompt):\n", " response = generator(text_prompt, max_length = 30, num_return_sequences=5)\n", " return response[0]['generated_text'] #type: ignore\n", "\n", "textbox = gr.Textbox()\n", "\n", "demo = gr.Interface(generate_text, textbox, textbox)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: unified_demo_text_generation"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch transformers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from transformers import pipeline\n", "\n", "generator = pipeline('text-generation', model = 'gpt2')\n", "\n", "def generate_text(text_prompt):\n", " response = generator(text_prompt, max_length = 30, num_return_sequences=5)\n", " return response[0]['generated_text'] # type: ignore\n", "\n", "textbox = gr.Textbox()\n", "\n", "demo = gr.Interface(generate_text, textbox, textbox)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
@@ -5,7 +5,7 @@ generator = pipeline('text-generation', model = 'gpt2')
|
|
5 |
|
6 |
def generate_text(text_prompt):
|
7 |
response = generator(text_prompt, max_length = 30, num_return_sequences=5)
|
8 |
-
return response[0]['generated_text'] #type: ignore
|
9 |
|
10 |
textbox = gr.Textbox()
|
11 |
|
|
|
5 |
|
6 |
def generate_text(text_prompt):
|
7 |
response = generator(text_prompt, max_length = 30, num_return_sequences=5)
|
8 |
+
return response[0]['generated_text'] # type: ignore
|
9 |
|
10 |
textbox = gr.Textbox()
|
11 |
|