import gradio as gr from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import torch # Load model and tokenizer model_name = "prithivida/grammar_error_correcter_v1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) def correct_grammar(input_text): inputs = tokenizer.encode("gec: " + input_text, return_tensors="pt", max_length=128, truncation=True) outputs = model.generate(inputs, max_length=128, num_beams=5, early_stopping=True) corrected = tokenizer.decode(outputs[0], skip_special_tokens=True) return corrected # Gradio Interface iface = gr.Interface( fn=correct_grammar, inputs=gr.Textbox(lines=4, placeholder="Enter your sentence..."), outputs="text", title="Grammar Correction Tool", description="Enter text with errors. The model will return a grammatically corrected version." ) iface.launch()