File size: 34,491 Bytes
d86b25e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 |
"""
Compatibility Analysis Engine for CanRun
Compatibility analysis for RTX/GTX gaming systems with G-Assist integration.
"""
import re
import logging
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass
from enum import Enum
from src.privacy_aware_hardware_detector import PrivacyAwareHardwareSpecs
from src.game_requirements_fetcher import GameRequirements
class CompatibilityLevel(Enum):
"""Compatibility levels for RTX/GTX gaming systems."""
EXCELLENT = "Excellent"
GOOD = "Good"
ADEQUATE = "Adequate"
POOR = "Poor"
INCOMPATIBLE = "Incompatible"
class ComponentType(Enum):
"""Hardware component types for RTX/GTX gaming analysis."""
GPU = "GPU"
CPU = "CPU"
RAM = "RAM"
STORAGE = "Storage"
OS = "OS"
DIRECTX = "DirectX"
@dataclass
class ComponentAnalysis:
"""Analysis result for a single hardware component."""
component: ComponentType
meets_minimum: bool
meets_recommended: bool
score: float # 0-1 scale
bottleneck_factor: float # 0-1 scale (1 = major bottleneck)
details: str
upgrade_suggestion: Optional[str] = None
def __post_init__(self):
"""Validate component analysis after initialization."""
assert 0.0 <= self.score <= 1.0, "Score must be between 0 and 1"
assert 0.0 <= self.bottleneck_factor <= 1.0, "Bottleneck factor must be between 0 and 1"
assert self.details.strip(), "Details cannot be empty"
@dataclass
class CompatibilityAnalysis:
"""Complete RTX/GTX gaming compatibility analysis result."""
game_name: str
overall_compatibility: CompatibilityLevel
can_run_minimum: bool
can_run_recommended: bool
component_analyses: List[ComponentAnalysis]
bottlenecks: List[ComponentType]
overall_score: float
summary: str
recommendations: List[str]
def __post_init__(self):
"""Validate compatibility analysis after initialization."""
assert self.game_name.strip(), "Game name cannot be empty"
assert 0.0 <= self.overall_score <= 1.0, "Overall score must be between 0 and 1"
assert self.component_analyses, "Component analyses cannot be empty"
assert self.summary.strip(), "Summary cannot be empty"
def get_minimum_requirements_status(self) -> Dict[str, Any]:
"""Get clear status about minimum requirements compliance."""
failing_components = []
meeting_components = []
for analysis in self.component_analyses:
if analysis.meets_minimum:
meeting_components.append({
'component': analysis.component.value,
'status': 'MEETS_MINIMUM',
'details': analysis.details
})
else:
failing_components.append({
'component': analysis.component.value,
'status': 'BELOW_MINIMUM',
'details': analysis.details,
'upgrade_suggestion': analysis.upgrade_suggestion
})
return {
'can_run_game': self.can_run_minimum,
'overall_status': 'MEETS_MINIMUM_REQUIREMENTS' if self.can_run_minimum else 'BELOW_MINIMUM_REQUIREMENTS',
'meeting_components': meeting_components,
'failing_components': failing_components,
'summary_message': self._get_minimum_requirements_message()
}
def _get_minimum_requirements_message(self) -> str:
"""Generate clear message about minimum requirements status."""
if self.can_run_minimum:
if self.can_run_recommended:
return f"CANRUN: {self.game_name} will run EXCELLENTLY - System exceeds recommended requirements!"
else:
return f"CANRUN: {self.game_name} will run - System meets minimum requirements!"
else:
failing_components = [c.component.value for c in self.component_analyses if not c.meets_minimum]
return f" CANNOT RUN: {self.game_name} requires upgrades - Failing components: {', '.join(failing_components)}"
def get_runnable_status(self) -> str:
"""Get simple runnable status message."""
return self._get_minimum_requirements_message()
class CompatibilityAnalyzer:
"""Compatibility analyzer for RTX/GTX gaming systems."""
def __init__(self, llm_analyzer=None):
self.logger = logging.getLogger(__name__)
self.llm_analyzer = llm_analyzer
# RTX/GTX-focused component weights for gaming performance
self.component_weights = {
ComponentType.GPU: 0.45, # Higher weight for GPU in gaming
ComponentType.CPU: 0.30, # Important for modern games
ComponentType.RAM: 0.15, # Memory requirements
ComponentType.STORAGE: 0.05, # Less critical for analysis
ComponentType.OS: 0.03, # Usually compatible
ComponentType.DIRECTX: 0.02 # DirectX support
}
# RTX/GTX GPU performance tiers
self.nvidia_gpu_tiers = {
# RTX 40 Series
'rtx 4090': 100, 'rtx 4080': 90, 'rtx 4070 ti': 80, 'rtx 4070': 75,
'rtx 4060 ti': 65, 'rtx 4060': 60,
# RTX 30 Series
'rtx 3090': 95, 'rtx 3080': 85, 'rtx 3070': 70, 'rtx 3060 ti': 60,
'rtx 3060': 55, 'rtx 3050': 45,
# RTX 20 Series
'rtx 2080 ti': 80, 'rtx 2080': 70, 'rtx 2070': 60, 'rtx 2060': 50,
# GTX 16 Series
'gtx 1660 ti': 45, 'gtx 1660': 40, 'gtx 1650': 30,
# GTX 10 Series
'gtx 1080 ti': 65, 'gtx 1080': 55, 'gtx 1070': 45, 'gtx 1060': 35,
'gtx 1050': 25
}
self.logger.info("RTX/GTX compatibility analyzer initialized")
def analyze_compatibility(self, game_name: str, hardware: PrivacyAwareHardwareSpecs,
requirements: GameRequirements) -> CompatibilityAnalysis:
"""Perform complete RTX/GTX gaming compatibility analysis."""
# Validate inputs
assert game_name and game_name.strip(), "Game name must be provided"
assert hardware.is_nvidia_gpu, "RTX/GTX GPU required for G-Assist compatibility"
assert requirements.game_name.strip(), "Game requirements must be valid"
# Analyze each component with RTX/GTX focus
component_analyses = [
self._analyze_nvidia_gpu(hardware, requirements),
self._analyze_cpu(hardware, requirements),
self._analyze_ram(hardware, requirements),
self._analyze_storage(hardware, requirements),
self._analyze_os(hardware, requirements),
self._analyze_directx(hardware, requirements)
]
# Calculate overall compatibility
overall_score = self._calculate_overall_score(component_analyses)
overall_compatibility = self._determine_compatibility_level(overall_score)
# Determine run capabilities
can_run_minimum = all(c.meets_minimum for c in component_analyses)
can_run_recommended = all(c.meets_recommended for c in component_analyses)
# Identify bottlenecks
bottlenecks = self._identify_bottlenecks(component_analyses)
# Generate summary and recommendations
summary = self._generate_summary(overall_compatibility, can_run_minimum,
can_run_recommended, bottlenecks)
recommendations = self._generate_recommendations(component_analyses, bottlenecks, hardware)
return CompatibilityAnalysis(
game_name=requirements.game_name,
overall_compatibility=overall_compatibility,
can_run_minimum=can_run_minimum,
can_run_recommended=can_run_recommended,
component_analyses=component_analyses,
bottlenecks=bottlenecks,
overall_score=overall_score,
summary=summary,
recommendations=recommendations
)
def _analyze_nvidia_gpu(self, hardware: PrivacyAwareHardwareSpecs,
requirements: GameRequirements) -> ComponentAnalysis:
"""Analyze RTX/GTX GPU compatibility."""
assert hardware.is_nvidia_gpu, "RTX/GTX GPU required"
# Get GPU performance score
gpu_score = self._get_nvidia_gpu_score(hardware.gpu_model)
# Estimate required scores from requirements
min_gpu_text = requirements.minimum_gpu.lower()
rec_gpu_text = requirements.recommended_gpu.lower()
min_score = self._estimate_required_gpu_score(min_gpu_text)
rec_score = self._estimate_required_gpu_score(rec_gpu_text)
# Check compatibility
meets_minimum = gpu_score >= min_score
meets_recommended = gpu_score >= rec_score
# Calculate performance metrics
score = min(1.0, gpu_score / max(rec_score, 1))
bottleneck_factor = max(0.0, (min_score - gpu_score) / max(min_score, 1))
# Generate details with RTX/DLSS features
rtx_features = []
if hardware.supports_rtx:
rtx_features.append("RTX Ray Tracing")
if hardware.supports_dlss:
rtx_features.append("DLSS")
details = f"NVIDIA {hardware.gpu_model} ({hardware.gpu_vram_gb}GB VRAM"
if rtx_features:
details += f", {', '.join(rtx_features)}"
details += ")"
if meets_recommended:
details += " - Exceeds recommended requirements"
elif meets_minimum:
details += " - Meets minimum requirements"
else:
details += " - Below minimum requirements"
# Generate upgrade suggestion
upgrade_suggestion = None
if not meets_minimum:
upgrade_suggestion = "Consider upgrading to a more powerful RTX GPU"
elif not meets_recommended:
upgrade_suggestion = "RTX upgrade recommended for better performance and ray tracing"
return ComponentAnalysis(
component=ComponentType.GPU,
meets_minimum=meets_minimum,
meets_recommended=meets_recommended,
score=score,
bottleneck_factor=bottleneck_factor,
details=details,
upgrade_suggestion=upgrade_suggestion
)
def _analyze_cpu(self, hardware: PrivacyAwareHardwareSpecs,
requirements: GameRequirements) -> ComponentAnalysis:
"""Analyze CPU compatibility for RTX/GTX gaming."""
assert hardware.cpu_cores > 0, "CPU cores must be greater than 0"
assert hardware.cpu_threads > 0, "CPU threads must be greater than 0"
# Estimate CPU performance
cpu_score = self._estimate_cpu_performance(hardware.cpu_model, hardware.cpu_cores, hardware.cpu_threads)
# Get required scores
min_cpu_text = requirements.minimum_cpu.lower()
rec_cpu_text = requirements.recommended_cpu.lower()
min_score = self._estimate_required_cpu_score(min_cpu_text)
rec_score = self._estimate_required_cpu_score(rec_cpu_text)
# Check compatibility
meets_minimum = cpu_score >= min_score
meets_recommended = cpu_score >= rec_score
# Calculate metrics
score = min(1.0, cpu_score / max(rec_score, 1))
bottleneck_factor = max(0.0, (min_score - cpu_score) / max(min_score, 1))
# Generate details
details = f"CPU: {hardware.cpu_model} ({hardware.cpu_cores}C/{hardware.cpu_threads}T)"
if meets_recommended:
details += " - Exceeds recommended requirements"
elif meets_minimum:
details += " - Meets minimum requirements"
else:
details += " - Below minimum requirements"
# Generate upgrade suggestion
upgrade_suggestion = None
if not meets_minimum:
upgrade_suggestion = "Consider upgrading to a faster CPU"
elif not meets_recommended:
upgrade_suggestion = "CPU upgrade recommended for optimal NVIDIA gaming performance"
return ComponentAnalysis(
component=ComponentType.CPU,
meets_minimum=meets_minimum,
meets_recommended=meets_recommended,
score=score,
bottleneck_factor=bottleneck_factor,
details=details,
upgrade_suggestion=upgrade_suggestion
)
def _analyze_ram(self, hardware: PrivacyAwareHardwareSpecs,
requirements: GameRequirements) -> ComponentAnalysis:
"""Analyze RAM compatibility."""
assert hardware.ram_total_gb > 0, "RAM must be greater than 0"
# Extract required RAM amounts
min_ram = requirements.minimum_ram_gb
rec_ram = requirements.recommended_ram_gb
# Apply tolerance for RAM comparison (theoretical vs actual)
# For high RAM amounts, a 5% tolerance is reasonable
min_ram_with_tolerance = min_ram * 0.95 # 5% tolerance
rec_ram_with_tolerance = rec_ram * 0.95 # 5% tolerance
# Log the RAM comparison with tolerance
self.logger.info(f"RAM comparison: System has {hardware.ram_total_gb}GB, min required: {min_ram}GB "
f"(with tolerance: {min_ram_with_tolerance:.1f}GB), "
f"recommended: {rec_ram}GB (with tolerance: {rec_ram_with_tolerance:.1f}GB)")
# Check compatibility with tolerance
meets_minimum = hardware.ram_total_gb >= min_ram_with_tolerance
meets_recommended = hardware.ram_total_gb >= rec_ram_with_tolerance
# Calculate metrics (use original values for score calculation)
score = min(1.0, hardware.ram_total_gb / max(rec_ram, 1))
bottleneck_factor = max(0.0, (min_ram - hardware.ram_total_gb) / max(min_ram, 1))
# Generate details
details = f"RAM: {hardware.ram_total_gb}GB"
if meets_recommended:
details += " - Sufficient for recommended settings"
elif meets_minimum:
details += " - Meets minimum requirements"
else:
details += " - Insufficient RAM"
# Generate upgrade suggestion
upgrade_suggestion = None
if not meets_minimum:
upgrade_suggestion = f"Add more RAM (need at least {min_ram}GB)"
elif not meets_recommended:
upgrade_suggestion = f"Consider upgrading to {rec_ram}GB for better performance"
return ComponentAnalysis(
component=ComponentType.RAM,
meets_minimum=meets_minimum,
meets_recommended=meets_recommended,
score=score,
bottleneck_factor=bottleneck_factor,
details=details,
upgrade_suggestion=upgrade_suggestion
)
def _analyze_storage(self, hardware: PrivacyAwareHardwareSpecs,
requirements: GameRequirements) -> ComponentAnalysis:
"""Analyze storage compatibility."""
# Extract required storage amounts
min_storage = requirements.minimum_storage_gb
rec_storage = requirements.recommended_storage_gb
# For this analysis, assume adequate storage is available
# In production, this would check actual disk space
meets_minimum = True
meets_recommended = True
score = 1.0
bottleneck_factor = 0.0
details = f"Storage: {min_storage}GB required"
if rec_storage > min_storage:
details += f" ({rec_storage}GB recommended)"
return ComponentAnalysis(
component=ComponentType.STORAGE,
meets_minimum=meets_minimum,
meets_recommended=meets_recommended,
score=score,
bottleneck_factor=bottleneck_factor,
details=details
)
def _analyze_os(self, hardware: PrivacyAwareHardwareSpecs,
requirements: GameRequirements) -> ComponentAnalysis:
"""Analyze OS compatibility for NVIDIA gaming."""
assert hardware.os_version.strip(), "OS version cannot be empty"
# Check OS compatibility
min_os = requirements.minimum_os.lower()
rec_os = requirements.recommended_os.lower()
is_windows = 'windows' in hardware.os_version.lower()
meets_minimum = is_windows and ('windows' in min_os or not min_os)
meets_recommended = is_windows and ('windows' in rec_os or not rec_os)
score = 1.0 if meets_minimum else 0.0
bottleneck_factor = 0.0 if meets_minimum else 1.0
details = f"OS: {hardware.os_version}"
if meets_minimum:
details += " - Compatible with G-Assist"
else:
details += " - May not be compatible with G-Assist"
upgrade_suggestion = None
if not meets_minimum:
upgrade_suggestion = "Windows OS recommended for full G-Assist compatibility"
return ComponentAnalysis(
component=ComponentType.OS,
meets_minimum=meets_minimum,
meets_recommended=meets_recommended,
score=score,
bottleneck_factor=bottleneck_factor,
details=details,
upgrade_suggestion=upgrade_suggestion
)
def _analyze_directx(self, hardware: PrivacyAwareHardwareSpecs,
requirements: GameRequirements) -> ComponentAnalysis:
"""Analyze DirectX compatibility."""
assert hardware.directx_version.strip(), "DirectX version cannot be empty"
# Extract version numbers
hardware_dx_version = self._extract_directx_version(hardware.directx_version)
min_dx_version = self._extract_directx_version(requirements.minimum_directx)
rec_dx_version = self._extract_directx_version(requirements.recommended_directx)
meets_minimum = hardware_dx_version >= min_dx_version
meets_recommended = hardware_dx_version >= rec_dx_version
score = 1.0 if meets_minimum else 0.0
bottleneck_factor = 0.0 if meets_minimum else 0.5
details = f"DirectX: {hardware.directx_version}"
if meets_recommended:
details += " - Fully supported"
elif meets_minimum:
details += " - Minimum version supported"
else:
details += " - Version may be insufficient"
upgrade_suggestion = None
if not meets_minimum:
upgrade_suggestion = "Update DirectX to the latest version"
return ComponentAnalysis(
component=ComponentType.DIRECTX,
meets_minimum=meets_minimum,
meets_recommended=meets_recommended,
score=score,
bottleneck_factor=bottleneck_factor,
details=details,
upgrade_suggestion=upgrade_suggestion
)
def _get_nvidia_gpu_score(self, gpu_name: str) -> int:
"""Get NVIDIA GPU performance score."""
assert gpu_name.strip(), "GPU name cannot be empty"
gpu_lower = gpu_name.lower()
# Check against known NVIDIA GPU tiers
for gpu_key, score in self.nvidia_gpu_tiers.items():
if gpu_key in gpu_lower:
return score
# Fallback estimation based on GPU name patterns
if 'rtx 40' in gpu_lower:
return 70 # Average RTX 40 series
elif 'rtx 30' in gpu_lower:
return 60 # Average RTX 30 series
elif 'rtx 20' in gpu_lower:
return 50 # Average RTX 20 series
elif 'gtx 16' in gpu_lower:
return 40 # Average GTX 16 series
elif 'gtx 10' in gpu_lower:
return 35 # Average GTX 10 series
else:
return 30 # Conservative estimate for unknown NVIDIA GPUs
def _estimate_cpu_performance(self, cpu_model: str, cores: int, threads: int) -> int:
"""Estimate CPU performance score."""
assert cpu_model.strip(), "CPU model cannot be empty"
assert cores > 0, "CPU cores must be greater than 0"
assert threads > 0, "CPU threads must be greater than 0"
cpu_lower = cpu_model.lower()
base_score = 50 # Default score
# Intel processors
if 'intel' in cpu_lower:
if 'i9' in cpu_lower:
base_score = 90
elif 'i7' in cpu_lower:
base_score = 80
elif 'i5' in cpu_lower:
base_score = 70
elif 'i3' in cpu_lower:
base_score = 60
# AMD processors
elif 'amd' in cpu_lower:
if 'ryzen 9' in cpu_lower:
base_score = 90
elif 'ryzen 7' in cpu_lower:
base_score = 80
elif 'ryzen 5' in cpu_lower:
base_score = 70
elif 'ryzen 3' in cpu_lower:
base_score = 60
# Adjust for core count
core_multiplier = min(1.5, cores / 4) # Cap at 1.5x for 4+ cores
thread_multiplier = min(1.2, threads / cores) # Hyperthreading bonus
return int(base_score * core_multiplier * thread_multiplier)
def _calculate_overall_score(self, component_analyses: List[ComponentAnalysis]) -> float:
"""Calculate weighted overall performance score."""
assert component_analyses, "Component analyses cannot be empty"
total_score = 0.0
total_weight = 0.0
for analysis in component_analyses:
weight = self.component_weights.get(analysis.component, 0.1)
total_score += analysis.score * weight
total_weight += weight
return total_score / total_weight if total_weight > 0 else 0.0
def _determine_compatibility_level(self, score: float) -> CompatibilityLevel:
"""Determine compatibility level based on score."""
assert 0.0 <= score <= 1.0, "Score must be between 0 and 1"
if score >= 0.9:
return CompatibilityLevel.EXCELLENT
elif score >= 0.7:
return CompatibilityLevel.GOOD
elif score >= 0.5:
return CompatibilityLevel.ADEQUATE
elif score >= 0.3:
return CompatibilityLevel.POOR
else:
return CompatibilityLevel.INCOMPATIBLE
def _identify_bottlenecks(self, component_analyses: List[ComponentAnalysis]) -> List[ComponentType]:
"""Identify component bottlenecks."""
assert component_analyses, "Component analyses cannot be empty"
bottlenecks = []
for analysis in component_analyses:
if analysis.bottleneck_factor > 0.3: # Bottleneck threshold
bottlenecks.append(analysis.component)
return bottlenecks
def _generate_summary(self, compatibility: CompatibilityLevel, can_run_min: bool,
can_run_rec: bool, bottlenecks: List[ComponentType]) -> str:
"""Generate NVIDIA gaming compatibility summary."""
if compatibility == CompatibilityLevel.EXCELLENT:
return "Your NVIDIA RTX/GTX system exceeds recommended requirements and will run this game excellently with full G-Assist support."
elif compatibility == CompatibilityLevel.GOOD:
return "Your NVIDIA RTX/GTX system meets recommended requirements and will run this game well with G-Assist features."
elif compatibility == CompatibilityLevel.ADEQUATE:
return "Your NVIDIA RTX/GTX system meets minimum requirements but may need setting adjustments for optimal performance."
elif compatibility == CompatibilityLevel.POOR:
return "Your NVIDIA RTX/GTX system barely meets requirements and may experience performance issues."
else:
return "Your NVIDIA RTX/GTX system does not meet minimum requirements for this game."
def _generate_recommendations(self, component_analyses: List[ComponentAnalysis],
bottlenecks: List[ComponentType],
hardware: PrivacyAwareHardwareSpecs) -> List[str]:
"""Generate NVIDIA gaming recommendations."""
recommendations = []
# Add component-specific recommendations
for analysis in component_analyses:
if analysis.upgrade_suggestion:
recommendations.append(analysis.upgrade_suggestion)
# Add NVIDIA-specific recommendations
if ComponentType.GPU in bottlenecks:
recommendations.append("Consider upgrading to a newer NVIDIA RTX GPU for better ray tracing and DLSS performance")
# Add RTX-specific features
if hardware.supports_rtx and ComponentType.GPU not in bottlenecks:
recommendations.append("Enable ray tracing if supported by the game for enhanced visual quality")
if hardware.supports_dlss and ComponentType.GPU not in bottlenecks:
recommendations.append("Enable DLSS if supported by the game for improved performance")
return recommendations
# Helper methods for parsing game requirements
def _extract_ram_amount(self, ram_text: str) -> int:
"""Extract RAM amount in GB from text."""
if not ram_text:
return 8 # Default assumption
# Look for GB values
match = re.search(r'(\d+)\s*GB', ram_text.upper())
if match:
return int(match.group(1))
# Look for MB values and convert
match = re.search(r'(\d+)\s*MB', ram_text.upper())
if match:
return max(1, int(match.group(1)) // 1024)
return 8 # Default fallback
def _extract_storage_amount(self, storage_text: str) -> int:
"""Extract storage amount in GB from text."""
if not storage_text:
return 50 # Default assumption
# Look for GB values
match = re.search(r'(\d+)\s*GB', storage_text.upper())
if match:
return int(match.group(1))
return 50 # Default fallback
def _extract_directx_version(self, dx_text: str) -> float:
"""Extract DirectX version number."""
if not dx_text:
return 12.0 # Default to DirectX 12
# Look for version numbers
match = re.search(r'(\d+)\.?(\d*)', dx_text.upper())
if match:
major = int(match.group(1))
minor = int(match.group(2)) if match.group(2) else 0
return major + (minor / 10)
return 12.0 # Default fallback
def _estimate_required_gpu_score(self, gpu_text: str) -> int:
"""Estimate required GPU score from game requirements text."""
if not gpu_text:
return 30 # Default minimum
gpu_lower = gpu_text.lower()
# Check for specific GPU mentions
for gpu_key, score in self.nvidia_gpu_tiers.items():
if gpu_key in gpu_lower:
return score
# Fallback patterns
if 'rtx' in gpu_lower:
return 50 # RTX requirement
elif 'gtx' in gpu_lower:
return 40 # GTX requirement
elif 'nvidia' in gpu_lower:
return 35 # General NVIDIA requirement
return 30 # Conservative fallback
def _estimate_required_cpu_score(self, cpu_text: str) -> int:
"""Estimate required CPU score from game requirements text."""
if not cpu_text:
return 50 # Default minimum
cpu_lower = cpu_text.lower()
# Intel patterns
if 'i9' in cpu_lower:
return 80
elif 'i7' in cpu_lower:
return 70
elif 'i5' in cpu_lower:
return 60
elif 'i3' in cpu_lower:
return 50
# AMD patterns
elif 'ryzen 9' in cpu_lower:
return 80
elif 'ryzen 7' in cpu_lower:
return 70
elif 'ryzen 5' in cpu_lower:
return 60
elif 'ryzen 3' in cpu_lower:
return 50
return 50 # Conservative fallback
async def get_llm_analysis_context(self, game_name: str, hardware: PrivacyAwareHardwareSpecs,
requirements: GameRequirements, analysis: CompatibilityAnalysis) -> Dict[str, Any]:
"""Provide structured context for LLM analysis with all compatibility data."""
try:
# Create comprehensive context for LLM
context = {
'game_name': game_name,
'hardware_specs': {
'gpu_model': hardware.gpu_model,
'gpu_vram_gb': hardware.gpu_vram_gb,
'cpu_model': hardware.cpu_model,
'cpu_cores': hardware.cpu_cores,
'cpu_threads': hardware.cpu_threads,
'ram_total_gb': hardware.ram_total_gb,
'os_version': hardware.os_version,
'directx_version': hardware.directx_version,
'supports_rtx': hardware.supports_rtx,
'supports_dlss': hardware.supports_dlss,
'is_nvidia_gpu': hardware.is_nvidia_gpu
},
'game_requirements': {
'minimum': {
'cpu': requirements.minimum_cpu,
'gpu': requirements.minimum_gpu,
'ram_gb': requirements.minimum_ram_gb,
'vram_gb': requirements.minimum_vram_gb,
'storage_gb': requirements.minimum_storage_gb,
'directx': requirements.minimum_directx,
'os': requirements.minimum_os
},
'recommended': {
'cpu': requirements.recommended_cpu,
'gpu': requirements.recommended_gpu,
'ram_gb': requirements.recommended_ram_gb,
'vram_gb': requirements.recommended_vram_gb,
'storage_gb': requirements.recommended_storage_gb,
'directx': requirements.recommended_directx,
'os': requirements.recommended_os
},
'source': requirements.source
},
'compatibility_analysis': {
'overall_compatibility': analysis.overall_compatibility.value,
'can_run_minimum': analysis.can_run_minimum,
'can_run_recommended': analysis.can_run_recommended,
'overall_score': analysis.overall_score,
'summary': analysis.summary,
'recommendations': analysis.recommendations,
'bottlenecks': [b.value for b in analysis.bottlenecks],
'component_analyses': [
{
'component': comp.component.value,
'meets_minimum': comp.meets_minimum,
'meets_recommended': comp.meets_recommended,
'score': comp.score,
'bottleneck_factor': comp.bottleneck_factor,
'details': comp.details,
'upgrade_suggestion': comp.upgrade_suggestion
}
for comp in analysis.component_analyses
]
}
}
# Use LLM for enhanced analysis if available
if self.llm_analyzer:
try:
llm_result = await self.llm_analyzer.analyze(
context,
self.llm_analyzer.LLMAnalysisType.DEEP_SYSTEM_ANALYSIS
)
# Add LLM insights to context
context['llm_analysis'] = {
'confidence_score': llm_result.confidence_score,
'analysis_text': llm_result.analysis_text,
'structured_data': llm_result.structured_data,
'recommendations': llm_result.recommendations,
'processing_time_ms': llm_result.processing_time_ms,
'g_assist_used': llm_result.g_assist_used
}
self.logger.info(f"LLM enhanced compatibility analysis for {game_name}")
except Exception as e:
self.logger.warning(f"LLM analysis failed: {e}")
context['llm_analysis'] = {'error': str(e)}
return context
except Exception as e:
self.logger.error(f"Failed to create LLM analysis context: {e}")
return {
'game_name': game_name,
'error': str(e),
'fallback_data': {
'can_run': analysis.can_run_minimum if analysis else False,
'summary': analysis.summary if analysis else "Analysis failed"
}
} |