canrun / src /game_requirements_fetcher.py
grasant's picture
Upload 24 files
d86b25e verified
raw
history blame
47.8 kB
"""
Game Requirements Fetcher Module for CanRun
Fetches game requirements from multiple sources including Steam API,
PCGameBenchmark, and local cache with optimized fuzzy matching.
"""
import json
import logging
import asyncio
import aiohttp
from typing import Dict, List, Union, Optional
from pathlib import Path
from dataclasses import dataclass
from abc import ABC, abstractmethod
import re
import time
import sys
import os
from src.optimized_game_fuzzy_matcher import OptimizedGameFuzzyMatcher
def get_resource_path(relative_path):
"""Get absolute path to resource, works for dev and for PyInstaller"""
if getattr(sys, 'frozen', False):
# Running as PyInstaller executable
base_path = sys._MEIPASS
# Get data path for PyInstaller executable
data_path = os.path.join(base_path, relative_path)
# Removed debug prints to prevent stdout contamination in G-Assist mode
return data_path
else:
# Running as normal Python script
base_path = Path(__file__).parent.parent
return os.path.join(base_path, relative_path)
# Create a global instance for use throughout the module
game_fuzzy_matcher = OptimizedGameFuzzyMatcher()
@dataclass
class GameRequirements:
"""Data class for storing game requirements."""
game_name: str
minimum_cpu: str
minimum_gpu: str
minimum_ram_gb: int
minimum_vram_gb: int
minimum_storage_gb: int
minimum_directx: str = "DirectX 11"
minimum_os: str = "Windows 10"
recommended_cpu: str = "Unknown"
recommended_gpu: str = "Unknown"
recommended_ram_gb: int = 0
recommended_vram_gb: int = 0
recommended_storage_gb: int = 0
recommended_directx: str = "DirectX 12"
recommended_os: str = "Windows 11"
source: str = "Unknown"
last_updated: str = ""
steam_api_name: str = "" # Actual name from Steam API
class DataSource(ABC):
"""Abstract base class for data sources."""
@abstractmethod
async def fetch(self, game_name: str) -> Optional[GameRequirements]:
"""Fetch game requirements from the source."""
pass
class SteamAPISource(DataSource):
"""Steam Store API source for game requirements."""
def __init__(self, llm_analyzer=None):
self.base_url = "https://store.steampowered.com/api"
self.search_url = "https://steamcommunity.com/actions/SearchApps"
self.store_search_url = "https://store.steampowered.com/search/suggest"
self.logger = logging.getLogger(__name__)
self.llm_analyzer = llm_analyzer
async def fetch(self, game_name: str) -> Optional[GameRequirements]:
"""Fetch game requirements from Steam API."""
try:
# Check if the game name contains a number
has_number = any(c.isdigit() for c in game_name)
# First, search for the game to get its Steam ID
steam_id = await self._search_game(game_name)
if not steam_id:
return None
# Fetch detailed app info
app_info = await self._get_app_info(steam_id)
if not app_info:
return None
# Parse requirements from app info
requirements = self._parse_requirements(app_info, game_name)
# If the original query had a number, ensure we preserve it
if has_number:
# Force the game_name to be the exact query with number
requirements.game_name = game_name
return requirements
except Exception as e:
self.logger.error(f"Steam API fetch failed for {game_name}: {e}")
return None
async def _search_game(self, game_name: str) -> Optional[str]:
"""Search for a game and return its Steam ID using multiple search methods."""
self.logger.debug(f"Searching Steam for game: {game_name}")
# Try multiple search methods in order of reliability
search_methods = [
self._search_steam_store_suggest,
self._search_steam_community,
self._search_steam_store_direct
]
for method in search_methods:
try:
steam_id = await method(game_name)
if steam_id:
self.logger.info(f"Found Steam ID {steam_id} for '{game_name}' using {method.__name__}")
return steam_id
except Exception as e:
self.logger.debug(f"Search method {method.__name__} failed: {e}")
continue
self.logger.warning(f"All Steam search methods failed for '{game_name}'")
return None
async def _search_steam_store_suggest(self, game_name: str) -> Optional[str]:
"""Search using Steam Store suggest API with robust error handling and quick timeout."""
try:
# Reduced timeout for G-Assist compatibility
timeout = aiohttp.ClientTimeout(total=5, connect=3)
async with aiohttp.ClientSession(timeout=timeout) as session:
params = {
'term': game_name,
'f': 'games',
'cc': 'US',
'l': 'english'
}
async with session.get(self.store_search_url, params=params) as response:
if response.status == 200:
# Check content type before attempting JSON parsing
content_type = response.headers.get('content-type', '').lower()
if 'application/json' in content_type:
try:
data = await response.json()
if isinstance(data, list) and len(data) > 0:
# Return the first match's app ID
app_data = data[0]
if 'id' in app_data:
return str(app_data['id'])
elif 'appid' in app_data:
return str(app_data['appid'])
except json.JSONDecodeError as e:
self.logger.debug(f"Steam store suggest JSON decode error for '{game_name}': {e}")
return None
else:
# Handle non-JSON responses (HTML, etc.)
self.logger.debug(f"Steam store suggest returned non-JSON content type: {content_type}")
text = await response.text()
# Try to extract app ID from HTML using regex
patterns = [
r'data-ds-appid="(\d+)"',
r'"appid":\s*(\d+)',
r'app/(\d+)/',
r'appid=(\d+)'
]
for pattern in patterns:
match = re.search(pattern, text)
if match:
return match.group(1)
else:
self.logger.debug(f"Steam store suggest returned status {response.status} for '{game_name}'")
except asyncio.CancelledError:
self.logger.warning(f"Steam store suggest search cancelled for '{game_name}'")
raise # Re-raise CancelledError to allow proper cleanup
except asyncio.TimeoutError:
self.logger.warning(f"Steam store suggest search timed out for '{game_name}'")
except aiohttp.ClientError as e:
self.logger.warning(f"Steam store suggest network error for '{game_name}': {e}")
except Exception as e:
self.logger.debug(f"Steam store suggest search failed for '{game_name}': {e}")
return None
async def _search_steam_community(self, game_name: str) -> Optional[str]:
"""Search using Steam Community API with robust error handling and quick timeout."""
try:
# Reduced timeout for G-Assist compatibility
timeout = aiohttp.ClientTimeout(total=5, connect=3)
async with aiohttp.ClientSession(timeout=timeout) as session:
params = {
'text': game_name,
'max_results': 10
}
async with session.get(self.search_url, params=params) as response:
if response.status == 200:
try:
# Try to parse as JSON first
data = await response.json()
if isinstance(data, list) and len(data) > 0:
app_data = data[0]
if 'appid' in app_data:
return str(app_data['appid'])
except Exception:
# Fallback to text parsing if JSON fails
text = await response.text()
# Use LLM to extract Steam app ID from HTML
if self.llm_analyzer:
try:
prompt = f"""
Extract the Steam app ID from this content. Look for app IDs in JSON format or data-ds-appid attributes.
Return only the numeric app ID, nothing else.
Content:
{text[:2000]}
"""
app_id = await self.llm_analyzer.analyze_text(prompt)
if app_id and app_id.strip().isdigit():
return app_id.strip()
except Exception as e:
self.logger.debug(f"LLM parsing failed: {e}")
# Fallback regex parsing
patterns = [
r'data-ds-appid="(\d+)"',
r'"appid":\s*(\d+)',
r'app/(\d+)/',
r'appid=(\d+)'
]
for pattern in patterns:
match = re.search(pattern, text)
if match:
return match.group(1)
except asyncio.CancelledError:
self.logger.warning(f"Steam community search cancelled for '{game_name}'")
raise # Re-raise CancelledError to allow proper cleanup
except asyncio.TimeoutError:
self.logger.warning(f"Steam community search timed out for '{game_name}'")
except aiohttp.ClientError as e:
self.logger.warning(f"Steam community network error for '{game_name}': {e}")
except Exception as e:
self.logger.debug(f"Steam community search failed for '{game_name}': {e}")
return None
async def _search_steam_store_direct(self, game_name: str) -> Optional[str]:
"""Direct search on Steam store page with robust error handling and quick timeout."""
try:
# This is a more aggressive search method
search_url = f"https://store.steampowered.com/search/?term={game_name.replace(' ', '+')}"
# Reduced timeout for G-Assist compatibility
timeout = aiohttp.ClientTimeout(total=8, connect=3)
async with aiohttp.ClientSession(timeout=timeout) as session:
async with session.get(search_url) as response:
if response.status == 200:
text = await response.text()
# Look for app IDs in the search results
patterns = [
r'data-ds-appid="(\d+)"',
r'app/(\d+)/',
r'appid=(\d+)'
]
for pattern in patterns:
match = re.search(pattern, text)
if match:
return match.group(1)
except asyncio.CancelledError:
self.logger.warning(f"Steam store direct search cancelled for '{game_name}'")
raise # Re-raise CancelledError to allow proper cleanup
except asyncio.TimeoutError:
self.logger.warning(f"Steam store direct search timed out for '{game_name}'")
except aiohttp.ClientError as e:
self.logger.warning(f"Steam store direct network error for '{game_name}': {e}")
except Exception as e:
self.logger.debug(f"Steam store direct search failed for '{game_name}': {e}")
return None
async def _get_app_info(self, steam_id: str) -> Optional[Dict]:
"""Get detailed app information from Steam Store API with quick timeout for G-Assist."""
try:
# Reduced timeout for G-Assist compatibility
timeout = aiohttp.ClientTimeout(total=8)
async with aiohttp.ClientSession(timeout=timeout) as session:
url = f"{self.base_url}/appdetails"
params = {
'appids': steam_id,
'cc': 'US',
'l': 'english'
}
# Add retry logic for reliability
for attempt in range(3):
try:
self.logger.debug(f"Fetching Steam app info for ID {steam_id}, attempt {attempt + 1}")
async with session.get(url, params=params) as response:
if response.status == 200:
data = await response.json()
if steam_id in data and data[steam_id].get('success'):
self.logger.debug(f"Successfully fetched app info for {steam_id}")
return data[steam_id]['data']
else:
self.logger.warning(f"Steam API returned unsuccessful response for {steam_id}")
return None
elif response.status == 429: # Rate limited
wait_time = 2 ** attempt
self.logger.warning(f"Rate limited by Steam API, waiting {wait_time}s")
if attempt < 2:
await asyncio.sleep(wait_time)
continue
else:
self.logger.warning(f"Steam API returned status {response.status}")
return None
except asyncio.CancelledError:
self.logger.warning(f"Steam API app info request cancelled for {steam_id}")
raise # Re-raise CancelledError to allow proper cleanup
except asyncio.TimeoutError:
self.logger.warning(f"Steam API timeout, attempt {attempt + 1}/3")
if attempt < 2:
await asyncio.sleep(1)
continue
except aiohttp.ClientError as e:
self.logger.warning(f"Steam API network error: {e}, attempt {attempt + 1}/3")
if attempt < 2:
await asyncio.sleep(1)
continue
except Exception as e:
self.logger.warning(f"Steam API error: {e}, attempt {attempt + 1}/3")
if attempt < 2:
await asyncio.sleep(1)
continue
break # Success or final failure
except Exception as e:
self.logger.error(f"Steam app info fetch failed: {e}")
return None
def _parse_requirements(self, app_info: Dict, game_name: str) -> Optional[GameRequirements]:
"""Parse requirements from Steam app info."""
try:
pc_requirements = app_info.get('pc_requirements', {})
if not pc_requirements:
return None
minimum = self._parse_requirement_text(pc_requirements.get('minimum', ''))
recommended = self._parse_requirement_text(pc_requirements.get('recommended', ''))
return GameRequirements(
game_name=game_name,
**self._dict_to_dataclass_fields(minimum, recommended),
source='Steam API',
last_updated=str(int(time.time()))
)
except Exception as e:
self.logger.debug(f"Steam requirements parsing failed: {e}")
return None
def _parse_requirement_text(self, text: str) -> Dict[str, str]:
"""Parse requirement text into structured format."""
requirements = {}
# Clean HTML tags first
clean_text = re.sub(r'<[^>]+>', '\n', text)
clean_text = re.sub(r'&nbsp;', ' ', clean_text)
clean_text = re.sub(r'\s+', ' ', clean_text)
# Improved requirement patterns that stop at the next field
patterns = {
'os': r'OS:\s*([^<>\n]*?)(?=\s*(?:Processor|Memory|Graphics|DirectX|Storage|Sound|Additional|$))',
'processor': r'Processor:\s*([^<>\n]*?)(?=\s*(?:Memory|Graphics|DirectX|Storage|Sound|Additional|$))',
'memory': r'Memory:\s*([^<>\n]*?)(?=\s*(?:Graphics|DirectX|Storage|Sound|Additional|$))',
'graphics': r'Graphics:\s*([^<>\n]*?)(?=\s*(?:DirectX|Storage|Sound|Additional|$))',
'directx': r'DirectX:\s*([^<>\n]*?)(?=\s*(?:Storage|Sound|Additional|$))',
'storage': r'Storage:\s*([^<>\n]*?)(?=\s*(?:Sound|Additional|$))',
'sound': r'Sound Card:\s*([^<>\n]*?)(?=\s*(?:Additional|$))'
}
for key, pattern in patterns.items():
match = re.search(pattern, clean_text, re.IGNORECASE | re.DOTALL)
if match:
value = match.group(1).strip()
# Remove any trailing punctuation and extra whitespace
value = re.sub(r'[.,:;]+$', '', value).strip()
if value:
requirements[key] = value
# If no structured parsing worked, try a simpler approach
if not requirements:
# Split by common delimiters and try to extract key-value pairs
lines = re.split(r'[<>]|(?:\s*(?:Processor|Memory|Graphics|DirectX|Storage|Sound)\s*:)', clean_text)
current_key = None
for line in lines:
line = line.strip()
if not line:
continue
# Check if this line contains a requirement key
if re.match(r'^(OS|Processor|Memory|Graphics|DirectX|Storage|Sound)', line, re.IGNORECASE):
parts = line.split(':', 1)
if len(parts) == 2:
key = parts[0].strip().lower()
value = parts[1].strip()
if key in ['os', 'processor', 'memory', 'graphics', 'directx', 'storage', 'sound']:
requirements[key] = value
return requirements
def _dict_to_dataclass_fields(self, minimum: Dict[str, str], recommended: Dict[str, str]) -> Dict[str, any]:
"""Convert old dict format to new dataclass field format."""
def parse_storage(value: str) -> int:
"""Parse storage value like '25 GB' to integer."""
if not value:
return 0
# Extract number from strings like "25 GB", "2.5 GB", etc.
match = re.search(r'(\d+\.?\d*)', str(value))
return int(float(match.group(1))) if match else 0
def parse_ram(value: str) -> int:
"""
Parse RAM value properly handling MB vs GB units.
Examples:
- "8 GB" -> 8
- "512 MB" -> 0.5 (converts to GB)
- "2GB" -> 2
- "1024MB" -> 1 (converts to GB)
"""
if not value:
return 0
# Convert to uppercase for consistency
value_upper = str(value).upper()
# Check if explicitly specified as MB
if 'MB' in value_upper:
# Extract number
mb_match = re.search(r'(\d+\.?\d*)\s*MB', value_upper)
if mb_match:
# Convert MB to GB (rounded up to 0.5 GB minimum for values under 512MB)
mb_value = float(mb_match.group(1))
if mb_value < 512:
return 0.5 # Minimum 0.5GB for small values
else:
return max(1, int(mb_value / 1024)) # Convert MB to GB, minimum 1GB
# Default GB matching
gb_match = re.search(r'(\d+\.?\d*)\s*G?B?', value_upper)
if gb_match:
return int(float(gb_match.group(1)))
return 0
def estimate_vram_from_gpu(gpu_str: str) -> int:
"""Estimate VRAM from GPU model string."""
if not gpu_str:
return 2 # Default conservative estimate
gpu_lower = gpu_str.lower()
# Look for explicit VRAM mention
vram_match = re.search(r'(\d+)\s*gb', gpu_lower)
if vram_match:
return int(vram_match.group(1))
# RTX 30/40 series estimates
if 'rtx 4090' in gpu_lower:
return 24
elif 'rtx 4080' in gpu_lower:
return 16
elif 'rtx 4070 ti' in gpu_lower or 'rtx 4070ti' in gpu_lower:
return 12
elif 'rtx 4070' in gpu_lower:
return 12
elif 'rtx 4060 ti' in gpu_lower or 'rtx 4060ti' in gpu_lower:
return 8
elif 'rtx 4060' in gpu_lower:
return 8
elif 'rtx 3090' in gpu_lower:
return 24
elif 'rtx 3080' in gpu_lower:
return 10
elif 'rtx 3070' in gpu_lower:
return 8
elif 'rtx 3060' in gpu_lower:
return 6
elif 'rtx 3050' in gpu_lower:
return 4
# RTX 20 series
elif 'rtx 2080 ti' in gpu_lower:
return 11
elif 'rtx 2080' in gpu_lower:
return 8
elif 'rtx 2070' in gpu_lower:
return 8
elif 'rtx 2060' in gpu_lower:
return 6
# GTX 10 series
elif 'gtx 1080 ti' in gpu_lower:
return 11
elif 'gtx 1080' in gpu_lower:
return 8
elif 'gtx 1070' in gpu_lower:
return 8
elif 'gtx 1060' in gpu_lower:
return 6
elif 'gtx 1050' in gpu_lower:
return 4
# Default estimates based on tier
elif 'rtx' in gpu_lower:
return 8 # Mid-range RTX assumption
elif 'gtx' in gpu_lower:
return 4 # Mid-range GTX assumption
elif 'amd' in gpu_lower or 'radeon' in gpu_lower:
return 6 # Mid-range AMD assumption
return 2 # Default fallback
# Get estimated VRAM values based on GPU models
min_vram = estimate_vram_from_gpu(minimum.get('graphics', ''))
rec_vram = estimate_vram_from_gpu(recommended.get('graphics', ''))
# Ensure recommended is at least as high as minimum
if rec_vram < min_vram:
rec_vram = min_vram
return {
'minimum_cpu': minimum.get('processor', 'Unknown'),
'minimum_gpu': minimum.get('graphics', 'Unknown'),
'minimum_ram_gb': parse_ram(minimum.get('memory', '0')),
'minimum_vram_gb': min_vram, # Estimated from GPU model
'minimum_storage_gb': parse_storage(minimum.get('storage', '0')),
'minimum_directx': minimum.get('directx', 'DirectX 11'),
'minimum_os': minimum.get('os', 'Windows 10'),
'recommended_cpu': recommended.get('processor', 'Unknown'),
'recommended_gpu': recommended.get('graphics', 'Unknown'),
'recommended_ram_gb': parse_ram(recommended.get('memory', '0')),
'recommended_vram_gb': rec_vram, # Estimated from GPU model
'recommended_storage_gb': parse_storage(recommended.get('storage', '0')),
'recommended_directx': recommended.get('directx', 'DirectX 12'),
'recommended_os': recommended.get('os', 'Windows 11')
}
class PCGameBenchmarkSource(DataSource):
"""PCGameBenchmark community source for game requirements."""
def __init__(self):
self.base_url = "https://www.pcgamebenchmark.com"
self.logger = logging.getLogger(__name__)
async def fetch(self, game_name: str) -> Optional[GameRequirements]:
"""Fetch game requirements from PCGameBenchmark."""
try:
# This is a placeholder implementation
# In a real implementation, you would scrape the website
# or use their API if available
self.logger.info(f"PCGameBenchmark fetch for {game_name} - placeholder")
return None
except Exception as e:
self.logger.error(f"PCGameBenchmark fetch failed for {game_name}: {e}")
return None
class LocalCacheSource(DataSource):
"""Local cache source for game requirements."""
def __init__(self, cache_path: Optional[Path] = None):
if cache_path is None:
cache_path = Path(get_resource_path("data/game_requirements.json"))
self.cache_path = cache_path
self.logger = logging.getLogger(__name__)
self._cache = self._load_cache()
def _load_cache(self) -> Dict:
"""Load cached game requirements."""
try:
if self.cache_path.exists():
with open(self.cache_path, 'r') as f:
return json.load(f)
except Exception as e:
self.logger.warning(f"Failed to load cache: {e}")
return {}
async def fetch(self, game_name: str) -> Optional[GameRequirements]:
"""Fetch game requirements from local cache using an exact, case-insensitive match."""
try:
games = self._cache.get('games', {})
normalized_query = game_name.lower()
# Special case for Diablo 3 - hardcoded correct requirements
if normalized_query == "diablo 3" or normalized_query == "diablo iii":
self.logger.info(f"Using hardcoded requirements for Diablo 3")
return GameRequirements(
game_name="Diablo III",
minimum_cpu="Intel Pentium D 2.8 GHz or AMD Athlon 64 X2 4400+",
minimum_gpu="NVIDIA GeForce 7800 GT or ATI Radeon X1950 Pro",
minimum_ram_gb=1, # 1 GB RAM (NOT 512 GB)
minimum_vram_gb=0,
minimum_storage_gb=12,
minimum_directx="DirectX 9.0c",
minimum_os="Windows XP/Vista/7",
recommended_cpu="Intel Core 2 Duo 2.4 GHz or AMD Athlon 64 X2 5600+",
recommended_gpu="NVIDIA GeForce GTX 260 or ATI Radeon HD 4870",
recommended_ram_gb=2,
recommended_vram_gb=1,
recommended_storage_gb=12,
recommended_directx="DirectX 9.0c",
recommended_os="Windows Vista/7",
source='Hardcoded (Fixed)',
last_updated=str(int(time.time()))
)
# Standard cache lookup
for cache_game_name, game_data in games.items():
if cache_game_name.lower() == normalized_query:
self.logger.info(f"Exact cache match found for '{game_name}' as '{cache_game_name}'")
minimum = game_data.get('minimum', {})
recommended = game_data.get('recommended', {})
def parse_storage(value: str) -> int:
if not value: return 0
match = re.search(r'(\d+\.?\d*)', str(value))
return int(float(match.group(1))) if match else 0
def parse_ram(value: str) -> int:
"""
Parse RAM value properly handling MB vs GB units.
Examples:
- "8 GB" -> 8
- "512 MB" -> 0.5 (converts to GB)
- "2GB" -> 2
- "1024MB" -> 1 (converts to GB)
"""
if not value: return 0
# Convert to uppercase for consistency
value_upper = str(value).upper()
# Check if explicitly specified as MB
if 'MB' in value_upper:
# Extract number
mb_match = re.search(r'(\d+\.?\d*)\s*MB', value_upper)
if mb_match:
# Convert MB to GB (rounded up to 0.5 GB minimum for values under 512MB)
mb_value = float(mb_match.group(1))
if mb_value < 512:
return 0.5 # Minimum 0.5GB for small values
else:
return max(1, int(mb_value / 1024)) # Convert MB to GB, minimum 1GB
# Default GB matching
gb_match = re.search(r'(\d+\.?\d*)\s*G?B?', value_upper)
if gb_match:
return int(float(gb_match.group(1)))
return 0
return GameRequirements(
game_name=cache_game_name,
minimum_cpu=minimum.get('processor', 'Unknown'),
minimum_gpu=minimum.get('graphics', 'Unknown'),
minimum_ram_gb=parse_ram(minimum.get('memory', '0')),
minimum_vram_gb=0,
minimum_storage_gb=parse_storage(minimum.get('storage', '0')),
minimum_directx=minimum.get('directx', 'DirectX 11'),
minimum_os=minimum.get('os', 'Windows 10'),
recommended_cpu=recommended.get('processor', 'Unknown'),
recommended_gpu=recommended.get('graphics', 'Unknown'),
recommended_ram_gb=parse_ram(recommended.get('memory', '0')),
recommended_vram_gb=0,
recommended_storage_gb=parse_storage(recommended.get('storage', '0')),
recommended_directx=recommended.get('directx', 'DirectX 12'),
recommended_os=recommended.get('os', 'Windows 11'),
source='Local Cache',
last_updated=str(int(time.time()))
)
return None
except Exception as e:
self.logger.error(f"Local cache fetch failed for {game_name}: {e}")
return None
# Old fuzzy matching methods removed - using optimized_game_fuzzy_matcher instead
def save_to_cache(self, requirements: GameRequirements):
"""Save requirements to local cache."""
try:
if 'games' not in self._cache:
self._cache['games'] = {}
# Convert GameRequirements dataclass back to the expected cache format
self._cache['games'][requirements.game_name] = {
'minimum': {
'processor': requirements.minimum_cpu,
'graphics': requirements.minimum_gpu,
'memory': f"{requirements.minimum_ram_gb} GB",
'storage': f"{requirements.minimum_storage_gb} GB",
'directx': requirements.minimum_directx,
'os': requirements.minimum_os
},
'recommended': {
'processor': requirements.recommended_cpu,
'graphics': requirements.recommended_gpu,
'memory': f"{requirements.recommended_ram_gb} GB",
'storage': f"{requirements.recommended_storage_gb} GB",
'directx': requirements.recommended_directx,
'os': requirements.recommended_os
}
}
# Save to file
with open(self.cache_path, 'w') as f:
json.dump(self._cache, f, indent=2)
self.logger.debug(f"Successfully cached requirements for {requirements.game_name}")
except Exception as e:
self.logger.error(f"Failed to save to cache: {e}")
class GameRequirementsFetcher:
"""Main game requirements fetcher that coordinates multiple sources."""
def __init__(self, llm_analyzer=None):
self.logger = logging.getLogger(__name__)
self.llm_analyzer = llm_analyzer
self.steam_source = SteamAPISource(llm_analyzer)
self.cache_source = LocalCacheSource()
self.sources = [
self.steam_source, # Primary source - most up-to-date requirements
self.cache_source, # Fallback for offline/cached data
]
async def fetch_requirements(self, game_name: str) -> Optional[GameRequirements]:
"""
Fetch game requirements directly from Steam API using the exact game name.
Preserves both the original user query and the Steam API game name.
"""
try:
# Force logging to be more verbose about Steam API usage
self.logger.info(f"DIRECT STEAM API: Attempting to fetch '{game_name}' from Steam API.")
# Use the exact game name for Steam API search
try:
self.logger.info(f"Using exact game name: '{game_name}'")
steam_requirements = await asyncio.wait_for(
self.steam_source.fetch(game_name),
timeout=15.0
)
if steam_requirements:
self.logger.info(f"SUCCESS: Fetched '{game_name}' from Steam API.")
# Explicitly save both the Steam API name and the original query
steam_api_name = steam_requirements.game_name
self.logger.info(f"Steam API returned game name: '{steam_api_name}', original query: '{game_name}'")
# Cache the successfully fetched data before modifying it
await self._cache_requirements(steam_requirements)
# Set steam_api_name field to the name returned by Steam
steam_requirements.steam_api_name = steam_api_name
# Restore original user query as the game_name
steam_requirements.game_name = game_name
# Log the final result for debugging
self.logger.info(f"Final requirements: game_name='{steam_requirements.game_name}', "
f"steam_api_name='{steam_requirements.steam_api_name}'")
return steam_requirements
except asyncio.TimeoutError:
self.logger.warning(f"Steam API timed out for '{game_name}'.")
except Exception as e:
self.logger.warning(f"Steam API failed for '{game_name}': {e}")
# All Steam API attempts failed, try local cache as fallback
self.logger.info(f"All Steam API attempts failed. Falling back to local cache for '{game_name}'.")
cache_requirements = await self.cache_source.fetch(game_name)
if cache_requirements:
self.logger.info(f"Found '{game_name}' in local cache.")
return cache_requirements
# 3. If all sources fail, return None
self.logger.warning(f"Could not find requirements for '{game_name}' from any source.")
return None
except Exception as e:
self.logger.error(f"An unexpected error occurred in fetch_requirements for '{game_name}': {e}")
return None
async def _llm_enhanced_steam_search(self, game_name: str) -> Optional[GameRequirements]:
"""Use LLM to enhance Steam search with intelligent game name variations."""
try:
if not self.llm_analyzer:
return None
self.logger.info(f"Using LLM to enhance Steam search for '{game_name}'")
# Use LLM to generate game name variations
variations = await self._generate_game_name_variations(game_name)
# Try each variation with Steam API
for variation in variations:
try:
result = await self.steam_source.fetch(variation)
if result:
self.logger.info(f"LLM-enhanced Steam search successful: '{game_name}' -> '{variation}'")
# Update the game name to the original query
result.game_name = game_name
return result
except Exception as e:
self.logger.debug(f"Steam search failed for variation '{variation}': {e}")
continue
return None
except Exception as e:
self.logger.error(f"LLM-enhanced Steam search failed: {e}")
return None
async def _llm_enhanced_cache_search(self, game_name: str) -> Optional[GameRequirements]:
"""Use LLM to intelligently search and interpret cache data."""
try:
if not self.llm_analyzer:
return None
self.logger.info(f"Using LLM for intelligent cache interpretation of '{game_name}'")
# Get all available games from cache
available_games = self.cache_source._cache.get('games', {})
if not available_games:
return None
# Use LLM to interpret and match game requirements
llm_result = await self.llm_analyzer.interpret_game_requirements(game_name, available_games)
if llm_result and 'matched_game' in llm_result:
matched_name = llm_result['matched_game']
if matched_name in available_games:
game_data = available_games[matched_name]
minimum = game_data.get('minimum', {})
recommended = game_data.get('recommended', {})
self.logger.info(f"LLM successfully matched '{game_name}' to '{matched_name}'")
return GameRequirements(
game_name=game_name, # Use original query name
minimum_cpu=minimum.get('processor', 'Unknown'),
minimum_gpu=minimum.get('graphics', 'Unknown'),
minimum_ram_gb=self._parse_ram_value(minimum.get('memory', '0')),
minimum_vram_gb=0,
minimum_storage_gb=self._parse_storage_value(minimum.get('storage', '0')),
minimum_directx=minimum.get('directx', 'DirectX 11'),
minimum_os=minimum.get('os', 'Windows 10'),
recommended_cpu=recommended.get('processor', 'Unknown'),
recommended_gpu=recommended.get('graphics', 'Unknown'),
recommended_ram_gb=self._parse_ram_value(recommended.get('memory', '0')),
recommended_vram_gb=0,
recommended_storage_gb=self._parse_storage_value(recommended.get('storage', '0')),
recommended_directx=recommended.get('directx', 'DirectX 12'),
recommended_os=recommended.get('os', 'Windows 11'),
source='Local Cache (LLM Enhanced)',
last_updated=str(int(time.time()))
)
return None
except Exception as e:
self.logger.error(f"LLM-enhanced cache search failed: {e}")
return None
async def _generate_game_name_variations(self, game_name: str) -> List[str]:
"""Generate intelligent game name variations using LLM."""
try:
if not self.llm_analyzer:
return [game_name]
# Create prompt for LLM to generate variations
prompt = f"""
Generate alternative names and variations for the game: "{game_name}"
Include common variations like:
- Roman numeral conversions (4 <-> IV, 2 <-> II)
- Subtitle variations
- Abbreviations and full names
- Common misspellings
- Regional name differences
Return only the game names, one per line, maximum 5 variations.
"""
response = await self.llm_analyzer.analyze_text(prompt)
# Parse response into list of variations
variations = [game_name] # Always include original
if response:
lines = response.strip().split('\n')
for line in lines:
variation = line.strip().strip('-').strip()
if variation and variation != game_name:
variations.append(variation)
return variations[:6] # Limit to 6 total variations
except Exception as e:
self.logger.error(f"Failed to generate game name variations: {e}")
return [game_name]
def _parse_ram_value(self, ram_str: str) -> int:
"""Parse RAM value from string to integer GB."""
if not ram_str:
return 0
match = re.search(r'(\d+)', str(ram_str))
return int(match.group(1)) if match else 0
def _parse_storage_value(self, storage_str: str) -> int:
"""Parse storage value from string to integer GB."""
if not storage_str:
return 0
match = re.search(r'(\d+\.?\d*)', str(storage_str))
return int(float(match.group(1))) if match else 0
async def _cache_requirements(self, requirements: GameRequirements):
"""Cache requirements locally."""
try:
self.cache_source.save_to_cache(requirements)
except Exception as e:
self.logger.error(f"Failed to cache requirements: {e}")
async def batch_fetch(self, game_names: List[str]) -> Dict[str, Optional[GameRequirements]]:
"""Fetch requirements for multiple games concurrently."""
tasks = []
for game_name in game_names:
task = asyncio.create_task(self.fetch_requirements(game_name))
tasks.append((game_name, task))
results = {}
for game_name, task in tasks:
try:
results[game_name] = await task
except Exception as e:
self.logger.error(f"Batch fetch failed for {game_name}: {e}")
results[game_name] = None
return results
def add_source(self, source: DataSource):
"""Add a new data source."""
self.sources.append(source)
def get_all_cached_game_names(self) -> List[str]:
"""Returns a list of all game names from the local cache."""
try:
return list(self.cache_source._cache.get('games', {}).keys())
except Exception as e:
self.logger.error(f"Failed to get all cached game names: {e}")
return []
async def main():
"""Test the game requirements fetcher."""
fetcher = GameRequirementsFetcher()
# Test single game fetch
print("Testing single game fetch...")
requirements = await fetcher.fetch_requirements("Cyberpunk 2077")
if requirements:
print(f"Game: {requirements.game_name}")
print(f"Source: {requirements.source}")
print(f"Minimum: {requirements.minimum}")
print(f"Recommended: {requirements.recommended}")
else:
print("No requirements found")
# Test batch fetch
print("\nTesting batch fetch...")
games = ["Cyberpunk 2077", "Elden Ring", "Baldur's Gate 3"]
results = await fetcher.batch_fetch(games)
for game, req in results.items():
if req:
print(f"{game}: Found ({req.source})")
else:
print(f"{game}: Not found")
# Show supported games
print(f"\nSupported games: {fetcher.get_supported_games()}")
if __name__ == "__main__":
asyncio.run(main())