File size: 59,665 Bytes
a963d65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 |
#!/usr/bin/env python3
"""
FhirFlame: Medical AI Technology Demonstration
MVP/Prototype Platform - Development & Testing Only
β οΈ IMPORTANT: This is a technology demonstration and MVP prototype for development,
testing, and educational purposes only. NOT approved for clinical use, patient data,
or production healthcare environments. Requires proper regulatory evaluation,
compliance review, and legal assessment before any real-world deployment.
Technology Stack Demonstration:
- Real-time medical text processing with CodeLlama 13B-Instruct
- FHIR R4/R5 compliance workflow prototypes
- Multi-provider AI routing architecture (Ollama, HuggingFace, Modal)
- Healthcare document processing with OCR capabilities
- DICOM medical imaging analysis demos
- Enterprise-grade security patterns (demonstration)
Architecture: Microservices with horizontal auto-scaling patterns
Security: Healthcare-grade infrastructure patterns (demo implementation)
Performance: Optimized for demonstration and development workflows
"""
import os
import asyncio
import json
import time
import uuid
from typing import Dict, Any, Optional
from pathlib import Path
# Import our core modules
from src.workflow_orchestrator import WorkflowOrchestrator
from src.enhanced_codellama_processor import EnhancedCodeLlamaProcessor
from src.fhir_validator import FhirValidator
from src.dicom_processor import dicom_processor
from src.monitoring import monitor
# Import database module for persistent job tracking
from database import db_manager
# Frontend UI components will be imported dynamically to avoid circular imports
# Global instances - using proper initialization to ensure services are ready
codellama = None
enhanced_codellama = None
fhir_validator = None
workflow_orchestrator = None
# ============================================================================
# SERVICE INITIALIZATION & STATUS TRACKING
# ============================================================================
# Service initialization status tracking for all AI providers and core components
# This ensures proper startup sequence and service health monitoring
service_status = {
"ollama_initialized": False, # Ollama local AI service status
"enhanced_codellama_initialized": False, # Enhanced CodeLlama processor status
"ollama_connection_url": None, # Active Ollama connection endpoint
"last_ollama_check": None # Timestamp of last Ollama health check
}
# ============================================================================
# TASK CANCELLATION & CONCURRENCY MANAGEMENT
# ============================================================================
# Task cancellation mechanism for graceful job termination
# Each task type can be independently cancelled without affecting others
cancellation_flags = {
"text_task": False, # Medical text processing cancellation flag
"file_task": False, # Document/file processing cancellation flag
"dicom_task": False # DICOM medical imaging cancellation flag
}
# Active running tasks storage for proper cancellation and cleanup
# Stores asyncio Task objects for each processing type
running_tasks = {
"text_task": None, # Current text processing asyncio Task
"file_task": None, # Current file processing asyncio Task
"dicom_task": None # Current DICOM processing asyncio Task
}
# Task queue system for handling multiple concurrent requests
# Allows queueing of pending tasks when system is busy
task_queues = {
"text_task": [], # Queued text processing requests
"file_task": [], # Queued file processing requests
"dicom_task": [] # Queued DICOM processing requests
}
# Current active job IDs for tracking and dashboard display
# Maps task types to their current PostgreSQL job record IDs
active_jobs = {
"text_task": None, # Active text processing job ID
"file_task": None, # Active file processing job ID
"dicom_task": None # Active DICOM processing job ID
}
import uuid
import datetime
class UnifiedJobManager:
"""Centralized job and metrics management for all FhirFlame processing with PostgreSQL persistence"""
def __init__(self):
# Keep minimal in-memory state for compatibility, but use PostgreSQL as primary store
self.jobs_database = {
"processing_jobs": [], # Legacy compatibility - now synced from PostgreSQL
"batch_jobs": [], # Legacy compatibility - now synced from PostgreSQL
"container_metrics": [], # Modal container scaling
"performance_metrics": [], # AI provider performance
"queue_statistics": { # Processing queue stats - calculated from PostgreSQL
"active_tasks": 0,
"completed_tasks": 0,
"failed_tasks": 0
},
"system_monitoring": [] # System performance
}
# Dashboard state - calculated from PostgreSQL
self.dashboard_state = {
"active_tasks": 0,
"files_processed": [],
"total_files": 0,
"successful_files": 0,
"failed_files": 0,
"failed_tasks": 0,
"processing_queue": {"active_tasks": 0, "completed_files": 0, "failed_files": 0},
"last_update": None
}
# Sync dashboard state from PostgreSQL on initialization
self._sync_dashboard_from_db()
def _sync_dashboard_from_db(self):
"""Sync dashboard state from PostgreSQL database"""
try:
metrics = db_manager.get_dashboard_metrics()
self.dashboard_state.update({
"active_tasks": metrics.get('active_jobs', 0),
"total_files": metrics.get('completed_jobs', 0),
"successful_files": metrics.get('successful_jobs', 0),
"failed_files": metrics.get('failed_jobs', 0),
"failed_tasks": metrics.get('failed_jobs', 0)
})
print(f"β
Dashboard synced from PostgreSQL: {metrics}")
except Exception as e:
print(f"β οΈ Failed to sync dashboard from PostgreSQL: {e}")
def add_processing_job(self, job_type: str, name: str, details: dict = None) -> str:
"""Record start of any type of processing job in PostgreSQL"""
job_id = str(uuid.uuid4())
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
job_record = {
"id": job_id,
"job_type": job_type, # "text", "file", "dicom", "batch"
"name": name[:100], # Truncate long names
"status": "processing",
"success": None,
"processing_time": None,
"error_message": None,
"entities_found": 0,
"result_data": details or {},
"text_input": details.get("text_input") if details else None,
"file_path": details.get("file_path") if details else None,
"workflow_type": details.get("workflow_type") if details else None
}
# Save to PostgreSQL
db_success = db_manager.add_job(job_record)
if db_success:
# Also add to in-memory for legacy compatibility
legacy_job = {
"job_id": job_id,
"job_type": job_type,
"name": name[:100],
"status": "started",
"success": None,
"start_time": timestamp,
"completion_time": None,
"processing_time": None,
"error": None,
"entities_found": 0,
"details": details or {}
}
self.jobs_database["processing_jobs"].append(legacy_job)
# Update dashboard state and queue statistics
self.dashboard_state["active_tasks"] += 1
self.jobs_database["queue_statistics"]["active_tasks"] += 1
self.dashboard_state["last_update"] = timestamp
print(f"β
Job {job_id[:8]} added to PostgreSQL: {name[:30]}...")
else:
print(f"β Failed to add job {job_id[:8]} to PostgreSQL")
return job_id
def update_job_completion(self, job_id: str, success: bool, metrics: dict = None):
"""Update job completion with metrics in PostgreSQL"""
completion_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Prepare update data for PostgreSQL
updates = {
"status": "completed",
"success": success,
"completed_at": completion_time
}
if metrics:
updates["processing_time"] = metrics.get("processing_time", "N/A")
updates["entities_found"] = metrics.get("entities_found", 0)
updates["error_message"] = metrics.get("error", None)
updates["result_data"] = metrics.get("details", {})
# Handle cancellation flag
if metrics.get("cancelled", False):
updates["status"] = "cancelled"
updates["error_message"] = "Cancelled by user"
# Update in PostgreSQL
db_success = db_manager.update_job(job_id, updates)
if db_success:
# Also update in-memory for legacy compatibility
for job in self.jobs_database["processing_jobs"]:
if job["job_id"] == job_id:
job["status"] = updates["status"]
job["success"] = success
job["completion_time"] = completion_time
if metrics:
job["processing_time"] = metrics.get("processing_time", "N/A")
job["entities_found"] = metrics.get("entities_found", 0)
job["error"] = metrics.get("error", None)
job["details"].update(metrics.get("details", {}))
# Handle cancellation flag
if metrics.get("cancelled", False):
job["status"] = "cancelled"
job["error"] = "Cancelled by user"
break
# Update dashboard state
self.dashboard_state["active_tasks"] = max(0, self.dashboard_state["active_tasks"] - 1)
self.dashboard_state["total_files"] += 1
if success:
self.dashboard_state["successful_files"] += 1
self.jobs_database["queue_statistics"]["completed_tasks"] += 1
else:
self.dashboard_state["failed_files"] += 1
self.dashboard_state["failed_tasks"] += 1
self.jobs_database["queue_statistics"]["failed_tasks"] += 1
self.jobs_database["queue_statistics"]["active_tasks"] = max(0,
self.jobs_database["queue_statistics"]["active_tasks"] - 1)
# Update files_processed list
job_name = "Unknown"
job_type = "Processing"
for job in self.jobs_database["processing_jobs"]:
if job["job_id"] == job_id:
job_name = job["name"]
job_type = job["job_type"].title() + " Processing"
break
file_info = {
"filename": job_name,
"file_type": job_type,
"success": success,
"processing_time": updates.get("processing_time", "N/A"),
"timestamp": completion_time,
"error": updates.get("error_message"),
"entities_found": updates.get("entities_found", 0)
}
self.dashboard_state["files_processed"].append(file_info)
self.dashboard_state["last_update"] = completion_time
# Log completion for debugging
status_icon = "β
" if success else "β" if not metrics.get("cancelled", False) else "βΉοΈ"
print(f"{status_icon} Job {job_id[:8]} completed in PostgreSQL: {job_name[:30]}... - Success: {success}")
else:
print(f"β Failed to update job {job_id[:8]} in PostgreSQL")
def add_batch_job(self, batch_type: str, batch_size: int, workflow_type: str) -> str:
"""Record start of batch processing job"""
job_id = str(uuid.uuid4())
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
batch_record = {
"job_id": job_id,
"job_type": "batch",
"batch_type": batch_type,
"batch_size": batch_size,
"workflow_type": workflow_type,
"status": "started",
"start_time": timestamp,
"completion_time": None,
"processed_count": 0,
"success_count": 0,
"failed_count": 0,
"documents": []
}
self.jobs_database["batch_jobs"].append(batch_record)
self.dashboard_state["active_tasks"] += 1
self.dashboard_state["last_update"] = f"Batch processing started: {batch_size} {workflow_type} documents"
return job_id
def update_batch_progress(self, job_id: str, processed_count: int, success_count: int, failed_count: int):
"""Update batch processing progress"""
for batch in self.jobs_database["batch_jobs"]:
if batch["job_id"] == job_id:
batch["processed_count"] = processed_count
batch["success_count"] = success_count
batch["failed_count"] = failed_count
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self.dashboard_state["last_update"] = f"Batch processing: {processed_count}/{batch['batch_size']} documents"
break
def get_dashboard_status(self) -> str:
"""Get current dashboard status string"""
if self.dashboard_state["total_files"] == 0:
return "π No files processed yet"
return f"π Files: {self.dashboard_state['total_files']} | Success: {self.dashboard_state['successful_files']} | Failed: {self.dashboard_state['failed_files']} | Active: {self.dashboard_state['active_tasks']}"
def get_dashboard_metrics(self) -> list:
"""Get file processing metrics for DataFrame display from PostgreSQL"""
# Get metrics directly from PostgreSQL database
metrics = db_manager.get_dashboard_metrics()
total_jobs = metrics.get('total_jobs', 0)
completed_jobs = metrics.get('completed_jobs', 0)
success_jobs = metrics.get('successful_jobs', 0)
failed_jobs = metrics.get('failed_jobs', 0)
active_jobs = metrics.get('active_jobs', 0)
# Update dashboard state with PostgreSQL data
self.dashboard_state["total_files"] = completed_jobs
self.dashboard_state["successful_files"] = success_jobs
self.dashboard_state["failed_files"] = failed_jobs
self.dashboard_state["active_tasks"] = active_jobs
success_rate = (success_jobs / max(1, completed_jobs)) * 100 if completed_jobs else 0
last_update = self.dashboard_state["last_update"] or "Never"
print(f"π DEBUG get_dashboard_metrics from PostgreSQL: Total={total_jobs}, Completed={completed_jobs}, Success={success_jobs}, Failed={failed_jobs}, Active={active_jobs}")
return [
["Total Files", completed_jobs],
["Success Rate", f"{success_rate:.1f}%"],
["Failed Files", failed_jobs],
["Completed Files", success_jobs],
["Active Tasks", active_jobs],
["Last Update", last_update]
]
def get_processing_queue(self) -> list:
"""Get processing queue for DataFrame display"""
return [
["Active Tasks", self.dashboard_state["active_tasks"]],
["Completed Files", self.dashboard_state["successful_files"]],
["Failed Files", self.dashboard_state["failed_files"]]
]
def get_jobs_history(self) -> list:
"""Get comprehensive jobs history for DataFrame display from PostgreSQL"""
jobs_data = []
# Get jobs from PostgreSQL database
recent_jobs = db_manager.get_jobs_history(limit=20)
print(f"π DEBUG get_jobs_history from PostgreSQL: Retrieved {len(recent_jobs)} jobs")
if recent_jobs:
print(f"π DEBUG: Sample jobs from PostgreSQL:")
for i, job in enumerate(recent_jobs[:3]):
status = job.get('status', 'unknown')
success = job.get('success', None)
print(f" Job {i}: {job.get('name', 'Unknown')[:20]} | Status: {status} | Success: {success} | Type: {job.get('job_type', 'Unknown')}")
# Process jobs from PostgreSQL
for job in recent_jobs:
job_type = job.get("job_type", "Unknown")
job_name = job.get("name", "Unknown")
# Determine job category
if job_type == "batch":
category = "π Batch Job"
elif job_type == "text":
category = "π Text Processing"
elif job_type == "dicom":
category = "π₯ DICOM Analysis"
elif job_type == "file":
category = "π Document Processing"
else:
category = "βοΈ Processing"
# Determine status with better handling
if job.get("status") == "cancelled":
status = "βΉοΈ Cancelled"
elif job.get("success") is True:
status = "β
Success"
elif job.get("success") is False:
status = "β Failed"
elif job.get("status") == "processing":
status = "π Processing"
else:
status = "β³ Pending"
job_row = [
job_name,
category,
status,
job.get("processing_time", "N/A")
]
jobs_data.append(job_row)
print(f"π DEBUG: Added PostgreSQL job row: {job_row}")
print(f"π DEBUG: Final jobs_data length from PostgreSQL: {len(jobs_data)}")
return jobs_data
# Create global instance
job_manager = UnifiedJobManager()
# Expose dashboard_state as reference to job_manager.dashboard_state
dashboard_state = job_manager.dashboard_state
def get_codellama():
"""Lazy load CodeLlama processor with proper Ollama initialization checks"""
global codellama, service_status
if codellama is None:
print("π Initializing CodeLlama processor with Ollama connection check...")
# Check Ollama availability first
ollama_ready = _check_ollama_service()
service_status["ollama_initialized"] = ollama_ready
service_status["last_ollama_check"] = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
if not ollama_ready:
print("β οΈ Ollama service not ready - CodeLlama will have limited functionality")
from src.codellama_processor import CodeLlamaProcessor
codellama = CodeLlamaProcessor()
print(f"β
CodeLlama processor initialized (Ollama: {'Ready' if ollama_ready else 'Not Ready'})")
return codellama
def get_enhanced_codellama():
"""Lazy load Enhanced CodeLlama processor with provider initialization checks"""
global enhanced_codellama, service_status
if enhanced_codellama is None:
print("π Initializing Enhanced CodeLlama processor with provider checks...")
# Initialize with proper provider status tracking
enhanced_codellama = EnhancedCodeLlamaProcessor()
service_status["enhanced_codellama_initialized"] = True
# Check provider availability after initialization
router = enhanced_codellama.router
print(f"β
Enhanced CodeLlama processor ready:")
print(f" Ollama: {'β
Ready' if router.ollama_available else 'β Not Ready'}")
print(f" HuggingFace: {'β
Ready' if router.hf_available else 'β Not Ready'}")
print(f" Modal: {'β
Ready' if router.modal_available else 'β Not Ready'}")
return enhanced_codellama
def _check_ollama_service():
"""Check if Ollama service is properly initialized and accessible with model status"""
import requests
import os
ollama_url = os.getenv("OLLAMA_BASE_URL", "http://ollama:11434")
use_real_ollama = os.getenv("USE_REAL_OLLAMA", "true").lower() == "true"
model_name = os.getenv("OLLAMA_MODEL", "codellama:13b-instruct")
if not use_real_ollama:
print("π Ollama disabled by configuration")
return False
# Try multiple connection attempts with different URLs
urls_to_try = [ollama_url]
if "ollama:11434" in ollama_url:
urls_to_try.append("http://localhost:11434")
elif "localhost:11434" in ollama_url:
urls_to_try.append("http://ollama:11434")
for attempt in range(3): # Try 3 times with delays
for url in urls_to_try:
try:
response = requests.get(f"{url}/api/version", timeout=5)
if response.status_code == 200:
print(f"β
Ollama service ready at {url}")
service_status["ollama_connection_url"] = url
# Check model status
model_status = _check_ollama_model_status(url, model_name)
service_status["model_status"] = model_status
service_status["model_name"] = model_name
if model_status == "available":
print(f"β
Model {model_name} is ready")
return True
elif model_status == "downloading":
print(f"π Model {model_name} is downloading (7.4GB)...")
return False
else:
print(f"β Model {model_name} not found")
return False
except Exception as e:
print(f"β οΈ Ollama check failed for {url}: {e}")
continue
import time
time.sleep(2) # Wait between attempts
print("β All Ollama connection attempts failed")
return False
def _check_ollama_model_status(url: str, model_name: str) -> str:
"""Check if specific model is available in Ollama"""
import requests
try:
# Check if model is in the list of downloaded models
response = requests.get(f"{url}/api/tags", timeout=10)
if response.status_code == 200:
models_data = response.json()
models = models_data.get("models", [])
# Check if our model is in the list
for model in models:
if model.get("name", "").startswith(model_name.split(":")[0]):
return "available"
# Model not found - it's likely downloading if Ollama is responsive
return "downloading"
else:
return "unknown"
except Exception as e:
print(f"β οΈ Model status check failed: {e}")
return "unknown"
def get_ollama_status() -> dict:
"""Get current Ollama and model status for UI display"""
model_name = os.getenv("OLLAMA_MODEL", "codellama:13b-instruct")
model_status = service_status.get("model_status", "unknown")
status_messages = {
"available": f"β
{model_name} ready for processing",
"downloading": f"π {model_name} downloading (7.4GB). Please wait...",
"unknown": f"β οΈ {model_name} status unknown"
}
return {
"service_available": service_status.get("ollama_initialized", False),
"model_status": model_status,
"model_name": model_name,
"message": status_messages.get(model_status, f"β οΈ Unknown status: {model_status}")
}
def get_fhir_validator():
"""Lazy load FHIR validator"""
global fhir_validator
if fhir_validator is None:
print("π Initializing FHIR validator...")
fhir_validator = FhirValidator()
print("β
FHIR validator ready")
return fhir_validator
def get_workflow_orchestrator():
"""Lazy load workflow orchestrator"""
global workflow_orchestrator
if workflow_orchestrator is None:
print("π Initializing workflow orchestrator...")
workflow_orchestrator = WorkflowOrchestrator()
print("β
Workflow orchestrator ready")
return workflow_orchestrator
def get_current_model_display():
"""Get current model name from environment variables for display"""
import os
# Try to get from OLLAMA_MODEL first (most common)
ollama_model = os.getenv("OLLAMA_MODEL", "")
if ollama_model:
# Format for display (e.g., "codellama:13b-instruct" -> "CodeLlama 13B-Instruct")
model_parts = ollama_model.split(":")
if len(model_parts) >= 2:
model_name = model_parts[0].title()
model_size = model_parts[1].upper().replace("B-", "B ").replace("-", " ").title()
return f"{model_name} {model_size}"
else:
return ollama_model.title()
# Fallback to other model configs
if os.getenv("MISTRAL_API_KEY"):
return "Mistral Large"
elif os.getenv("HF_TOKEN"):
return "HuggingFace Transformers"
elif os.getenv("MODAL_TOKEN_ID"):
return "Modal Labs GPU"
else:
return "CodeLlama 13B-Instruct" # Default fallback
def get_simple_agent_status():
"""Get comprehensive system status including APIs and configurations"""
global codellama, enhanced_codellama, fhir_validator, workflow_orchestrator
# Core component status
codellama_status = "β
Ready" if codellama is not None else "β³ On-demand loading"
enhanced_status = "β
Ready" if enhanced_codellama is not None else "β³ On-demand loading"
fhir_status = "β
Ready" if fhir_validator is not None else "β³ On-demand loading"
workflow_status = "β
Ready" if workflow_orchestrator is not None else "β³ On-demand loading"
dicom_status = "β
Available" if dicom_processor else "β Not available"
# API and service status
mistral_api_key = os.getenv("MISTRAL_API_KEY", "")
mistral_status = "β
Configured" if mistral_api_key else "β Missing API key"
# Use enhanced processor availability check for Ollama
ollama_status = "β Not available locally"
try:
# Check using the same logic as enhanced processor
ollama_url = os.getenv("OLLAMA_BASE_URL", "http://ollama:11434")
use_real_ollama = os.getenv("USE_REAL_OLLAMA", "true").lower() == "true"
if use_real_ollama:
import requests
# Try both docker service name and localhost
urls_to_try = [ollama_url]
if "ollama:11434" in ollama_url:
urls_to_try.append("http://localhost:11434")
elif "localhost:11434" in ollama_url:
urls_to_try.append("http://ollama:11434")
for url in urls_to_try:
try:
response = requests.get(f"{url}/api/version", timeout=2)
if response.status_code == 200:
ollama_status = "β
Available"
break
except:
continue
# If configured but can't reach, assume it's starting up
if ollama_status == "β Not available locally" and use_real_ollama:
ollama_status = "β οΈ Configured (starting up)"
except:
pass
# DICOM processing status
try:
import pydicom
dicom_lib_status = "β
pydicom available"
except ImportError:
dicom_lib_status = "β οΈ pydicom not installed (fallback mode)"
# Modal Labs status
modal_token = os.getenv("MODAL_TOKEN_ID", "")
modal_status = "β
Configured" if modal_token else "β Not configured"
# HuggingFace status using enhanced processor logic
hf_token = os.getenv("HF_TOKEN", "")
if not hf_token:
hf_status = "β No token (set HF_TOKEN)"
elif not hf_token.startswith("hf_"):
hf_status = "β Invalid token format"
else:
try:
# Use the same validation as enhanced processor
from huggingface_hub import HfApi
api = HfApi(token=hf_token)
user_info = api.whoami()
if user_info and 'name' in user_info:
hf_status = f"β
Authenticated as {user_info['name']}"
else:
hf_status = "β Authentication failed"
except ImportError:
hf_status = "β huggingface_hub not installed"
except Exception as e:
hf_status = f"β Error: {str(e)[:30]}..."
status_html = f"""
<div class="system-status-container" style="padding: 20px; border-radius: 8px; border: 1px solid var(--border-color-primary, #e5e7eb); background: var(--background-fill-primary, #ffffff); color: var(--body-text-color, #374151);">
<h3 style="color: var(--body-text-color, #374151); margin-bottom: 20px;">π§ System Components Status</h3>
<div style="margin-bottom: 15px;">
<h4 style="color: var(--body-text-color-subdued, #6b7280); margin-bottom: 8px;">Core Processing Components</h4>
<p><strong>CodeLlama Processor:</strong> <span style="color: #059669;">{codellama_status}</span></p>
<p><strong>Enhanced Processor:</strong> <span style="color: #059669;">{enhanced_status}</span></p>
<p><strong>FHIR Validator:</strong> <span style="color: #059669;">{fhir_status}</span></p>
<p><strong>Workflow Orchestrator:</strong> <span style="color: #059669;">{workflow_status}</span></p>
<p><strong>DICOM Processor:</strong> <span style="color: #059669;">{dicom_status}</span></p>
</div>
<div style="margin-bottom: 15px;">
<h4 style="color: var(--body-text-color-subdued, #6b7280); margin-bottom: 8px;">AI Provider APIs</h4>
<p><strong>Mistral API:</strong> <span style="color: {'#059669' if mistral_api_key else '#dc2626'};">{mistral_status}</span></p>
<p><strong>Ollama Local:</strong> <span style="color: {'#059669' if 'β
' in ollama_status else '#dc2626'};">{ollama_status}</span></p>
<p><strong>Modal Labs GPU:</strong> <span style="color: {'#059669' if modal_token else '#dc2626'};">{modal_status}</span></p>
<p><strong>HuggingFace API:</strong> <span style="color: {'#059669' if hf_token else '#dc2626'};">{hf_status}</span></p>
</div>
<div style="margin-bottom: 15px;">
<h4 style="color: var(--body-text-color-subdued, #6b7280); margin-bottom: 8px;">Medical Processing</h4>
<p><strong>DICOM Library:</strong> <span style="color: {'#059669' if 'β
' in dicom_lib_status else '#B71C1C'};">{dicom_lib_status}</span></p>
<p><strong>FHIR R4 Compliance:</strong> <span style="color: #059669;">β
Active</span></p>
<p><strong>FHIR R5 Compliance:</strong> <span style="color: #059669;">β
Active</span></p>
<p><strong>Medical Entity Extraction:</strong> <span style="color: #059669;">β
Ready</span></p>
<p><strong>OCR Processing:</strong> <span style="color: #059669;">β
Integrated</span></p>
</div>
<div>
<h4 style="color: var(--body-text-color-subdued, #6b7280); margin-bottom: 8px;">System Status</h4>
<p><strong>Overall Status:</strong> <span style="color: #16a34a;">π’ Operational</span></p>
<p><strong>Current Model:</strong> <span style="color: #2563eb;">{get_current_model_display()}</span></p>
<p><strong>Processing Mode:</strong> <span style="color: #2563eb;">Multi-Provider Dynamic Scaling</span></p>
<p><strong>Architecture:</strong> <span style="color: #2563eb;">Lazy Loading + Frontend/Backend Separation</span></p>
</div>
</div>
"""
return status_html
# Processing Functions
async def _process_text_async(text, enable_fhir):
"""Async text processing that can be cancelled"""
global cancellation_flags, running_tasks
# Check for cancellation before processing
if cancellation_flags["text_task"]:
raise asyncio.CancelledError("Text processing cancelled")
# Use Enhanced CodeLlama processor directly (with our Ollama fixes)
try:
processor = get_enhanced_codellama()
method_name = "Enhanced CodeLlama (Multi-Provider)"
result = await processor.process_document(
medical_text=text,
document_type="clinical_note",
extract_entities=True,
generate_fhir=enable_fhir
)
# Check for cancellation after processing
if cancellation_flags["text_task"]:
raise asyncio.CancelledError("Text processing cancelled")
# Get the actual provider used from the result
actual_provider = result.get("provider_metadata", {}).get("provider_used", "Enhanced Processor")
method_name = f"Enhanced CodeLlama ({actual_provider.title()})"
return result, method_name
except Exception as e:
print(f"β οΈ Enhanced CodeLlama processing failed: {e}")
# If enhanced processor fails, try basic CodeLlama as fallback
try:
processor = get_codellama()
method_name = "CodeLlama (Basic Fallback)"
result = await processor.process_document(
medical_text=text,
document_type="clinical_note",
extract_entities=True,
generate_fhir=enable_fhir
)
# Check for cancellation after processing
if cancellation_flags["text_task"]:
raise asyncio.CancelledError("Text processing cancelled")
return result, method_name
except Exception as fallback_error:
print(f"β HuggingFace fallback also failed: {fallback_error}")
# Return a basic result structure instead of raising exception
return {
"extracted_data": {"error": "Processing failed", "patient": "Unknown Patient", "conditions": [], "medications": []},
"metadata": {"model_used": "error_fallback", "processing_time": 0}
}, "Error (Both Failed)"
def process_text_only(text, enable_fhir=True):
"""Process text with CodeLlama processor"""
global cancellation_flags, running_tasks
print(f"π₯ DEBUG: process_text_only called with text length: {len(text) if text else 0}")
if not text.strip():
return "β Please enter some medical text", {}, {}
# FORCE JOB RECORDING - Always record job start with error handling
job_id = None
try:
job_id = job_manager.add_processing_job("text", text[:50], {"enable_fhir": enable_fhir})
active_jobs["text_task"] = job_id
print(f"β
DEBUG: Job {job_id[:8]} recorded successfully")
except Exception as job_error:
print(f"β DEBUG: Failed to record job: {job_error}")
# Create fallback job_id to continue processing
job_id = "fallback-" + str(uuid.uuid4())[:8]
try:
# Reset cancellation flag at start
cancellation_flags["text_task"] = False
start_time = time.time()
monitor.log_event("text_processing_start", {"text_length": len(text)})
# Check for cancellation early
if cancellation_flags["text_task"]:
job_manager.update_job_completion(job_id, False, {"error": "Cancelled by user"})
return "βΉοΈ Processing cancelled", {}, {}
# Run async processing with proper cancellation handling
async def run_with_cancellation():
task = asyncio.create_task(_process_text_async(text, enable_fhir))
running_tasks["text_task"] = task
try:
return await task
finally:
if "text_task" in running_tasks:
del running_tasks["text_task"]
result, method_name = asyncio.run(run_with_cancellation())
# Calculate processing time and extract results
processing_time = time.time() - start_time
# Extract results for display
# Handle extracted_data - it might be a dict or JSON string
extracted_data_raw = result.get("extracted_data", {})
if isinstance(extracted_data_raw, str):
try:
entities = json.loads(extracted_data_raw)
except json.JSONDecodeError:
entities = {}
else:
entities = extracted_data_raw
# Check if processing actually failed
processing_failed = (
isinstance(entities, dict) and entities.get("error") == "Processing failed" or
result.get("metadata", {}).get("error") == "All providers failed" or
method_name == "Error (Both Failed)" or
result.get("failover_metadata", {}).get("complete_failure", False)
)
if processing_failed:
# Processing failed - return error status
providers_tried = entities.get("providers_tried", ["ollama", "huggingface"]) if isinstance(entities, dict) else ["unknown"]
error_msg = entities.get("error", "Processing failed") if isinstance(entities, dict) else "Processing failed"
status = f"β **Processing Failed**\n\nπ **Text:** {len(text)} characters\nβ οΈ **Error:** {error_msg}\nπ **Providers Tried:** {', '.join(providers_tried)}\nπ‘ **Note:** All available AI providers are currently unavailable"
# FORCE RECORD failed job completion with error handling
try:
if job_id:
job_manager.update_job_completion(job_id, False, {
"processing_time": f"{processing_time:.2f}s",
"error": error_msg,
"providers_tried": providers_tried
})
print(f"β
DEBUG: Failed job {job_id[:8]} recorded successfully")
else:
print("β DEBUG: No job_id to record failure")
except Exception as completion_error:
print(f"β DEBUG: Failed to record job completion: {completion_error}")
monitor.log_event("text_processing_failed", {"error": error_msg, "providers_tried": providers_tried})
return status, entities, {}
else:
# Processing succeeded
status = f"β
**Processing Complete!**\n\nProcessed {len(text)} characters using **{method_name}**"
fhir_resources = result.get("fhir_bundle", {}) if enable_fhir else {}
# FORCE RECORD successful job completion with error handling
try:
if job_id:
job_manager.update_job_completion(job_id, True, {
"processing_time": f"{processing_time:.2f}s",
"entities_found": len(entities) if isinstance(entities, dict) else 0,
"method": method_name
})
print(f"β
DEBUG: Success job {job_id[:8]} recorded successfully")
else:
print("β DEBUG: No job_id to record success")
except Exception as completion_error:
print(f"β DEBUG: Failed to record job completion: {completion_error}")
# Clear active job tracking
active_jobs["text_task"] = None
monitor.log_event("text_processing_success", {"entities_found": len(entities), "method": method_name})
return status, entities, fhir_resources
except asyncio.CancelledError:
job_manager.update_job_completion(job_id, False, {"error": "Processing cancelled"})
active_jobs["text_task"] = None
monitor.log_event("text_processing_cancelled", {})
return "βΉοΈ Processing cancelled", {}, {}
except Exception as e:
job_manager.update_job_completion(job_id, False, {"error": str(e)})
active_jobs["text_task"] = None
monitor.log_event("text_processing_error", {"error": str(e)})
return f"β Processing failed: {str(e)}", {}, {}
async def _process_file_async(file, enable_mistral_ocr, enable_fhir):
"""Async file processing that can be cancelled"""
global cancellation_flags, running_tasks
# First, extract text from the file using OCR
from src.file_processor import local_processor
with open(file.name, 'rb') as f:
document_bytes = f.read()
# Track actual OCR method used
actual_ocr_method = None
# Use local processor for OCR extraction
if enable_mistral_ocr:
# Try Mistral OCR first if enabled
try:
extracted_text = await local_processor._extract_with_mistral(document_bytes)
actual_ocr_method = "mistral_api"
except Exception as e:
print(f"β οΈ Mistral OCR failed, falling back to local OCR: {e}")
# Fallback to local OCR
ocr_result = await local_processor.process_document(document_bytes, "user", file.name)
extracted_text = ocr_result.get('extracted_text', '')
actual_ocr_method = "local_processor"
else:
# Use local OCR
ocr_result = await local_processor.process_document(document_bytes, "user", file.name)
extracted_text = ocr_result.get('extracted_text', '')
actual_ocr_method = "local_processor"
# Check for cancellation after OCR
if cancellation_flags["file_task"]:
raise asyncio.CancelledError("File processing cancelled")
# Process the extracted text using CodeLlama with HuggingFace fallback
# Check for cancellation before processing
if cancellation_flags["file_task"]:
raise asyncio.CancelledError("File processing cancelled")
# Try CodeLlama processor first
try:
processor = get_codellama()
method_name = "CodeLlama (Ollama)"
result = await processor.process_document(
medical_text=extracted_text,
document_type="clinical_note",
extract_entities=True,
generate_fhir=enable_fhir,
source_metadata={"extraction_method": actual_ocr_method}
)
except Exception as e:
print(f"β οΈ CodeLlama processing failed: {e}, falling back to HuggingFace")
# Fallback to Enhanced CodeLlama (HuggingFace)
try:
processor = get_enhanced_codellama()
method_name = "HuggingFace (Fallback)"
result = await processor.process_document(
medical_text=extracted_text,
document_type="clinical_note",
extract_entities=True,
generate_fhir=enable_fhir,
source_metadata={"extraction_method": actual_ocr_method}
)
except Exception as fallback_error:
print(f"β HuggingFace fallback also failed: {fallback_error}")
# Return a basic result structure instead of raising exception
result = {
"extracted_data": {"error": "Processing failed", "patient": "Unknown Patient", "conditions": [], "medications": []},
"metadata": {"model_used": "error_fallback", "processing_time": 0}
}
method_name = "Error (Both Failed)"
# Check for cancellation after processing
if cancellation_flags["file_task"]:
raise asyncio.CancelledError("File processing cancelled")
return result, method_name, extracted_text, actual_ocr_method
def process_file_only(file, enable_mistral_ocr=True, enable_fhir=True):
"""Process uploaded file with CodeLlama processor and optional Mistral OCR"""
global cancellation_flags
if not file:
return "β Please upload a file", {}, {}
# Record job start
job_id = job_manager.add_processing_job("file", file.name, {
"enable_mistral_ocr": enable_mistral_ocr,
"enable_fhir": enable_fhir
})
active_jobs["file_task"] = job_id
try:
# Reset cancellation flag at start
cancellation_flags["file_task"] = False
monitor.log_event("file_processing_start", {"filename": file.name})
# Check for cancellation early
if cancellation_flags["file_task"]:
job_manager.update_job_completion(job_id, False, {"error": "Cancelled by user"})
return "βΉοΈ File processing cancelled", {}, {}
import time
start_time = time.time()
# Process the file with cancellation support
try:
# Run async processing with proper cancellation handling
async def run_with_cancellation():
task = asyncio.create_task(_process_file_async(file, enable_mistral_ocr, enable_fhir))
running_tasks["file_task"] = task
try:
return await task
finally:
if "file_task" in running_tasks:
del running_tasks["file_task"]
result, method_name, extracted_text, actual_ocr_method = asyncio.run(run_with_cancellation())
except asyncio.CancelledError:
job_manager.update_job_completion(job_id, False, {"error": "Processing cancelled"})
active_jobs["file_task"] = None
return "βΉοΈ File processing cancelled", {}, {}
processing_time = time.time() - start_time
# Enhanced status message with actual OCR information
ocr_method_display = "Mistral OCR (Advanced)" if actual_ocr_method == "mistral_api" else "Local OCR (Standard)"
status = f"β
**File Processing Complete!**\n\nπ **File:** {file.name}\nπ **OCR Method:** {ocr_method_display}\nπ€ **AI Processor:** {method_name}\nβ±οΈ **Processing Time:** {processing_time:.2f}s"
# Handle extracted_data - it might be a dict or JSON string
extracted_data_raw = result.get("extracted_data", {})
if isinstance(extracted_data_raw, str):
try:
entities = json.loads(extracted_data_raw)
except json.JSONDecodeError:
entities = {}
else:
entities = extracted_data_raw
fhir_resources = result.get("fhir_bundle", {}) if enable_fhir else {}
# Record successful job completion
job_manager.update_job_completion(job_id, True, {
"processing_time": f"{processing_time:.2f}s",
"entities_found": len(entities) if isinstance(entities, dict) else 0,
"method": method_name
})
# Clear active job tracking
active_jobs["file_task"] = None
monitor.log_event("file_processing_success", {"filename": file.name, "method": method_name})
return status, entities, fhir_resources
except Exception as e:
job_manager.update_job_completion(job_id, False, {"error": str(e)})
active_jobs["file_task"] = None
monitor.log_event("file_processing_error", {"error": str(e)})
return f"β File processing failed: {str(e)}", {}, {}
def process_dicom_only(dicom_file):
"""Process DICOM files using the real DICOM processor"""
global cancellation_flags
if not dicom_file:
return "β Please upload a DICOM file", {}, {}
# Record job start
job_id = job_manager.add_processing_job("dicom", dicom_file.name)
active_jobs["dicom_task"] = job_id
try:
# Reset cancellation flag at start
cancellation_flags["dicom_task"] = False
# Check for cancellation early
if cancellation_flags["dicom_task"]:
job_manager.update_job_completion(job_id, False, {"error": "Cancelled by user"})
return "βΉοΈ DICOM processing cancelled", {}, {}
monitor.log_event("dicom_processing_start", {"filename": dicom_file.name})
import time
start_time = time.time()
# Process DICOM file using the real processor with cancellation support
async def run_dicom_with_cancellation():
task = asyncio.create_task(dicom_processor.process_dicom_file(dicom_file.name))
running_tasks["dicom_task"] = task
try:
return await task
finally:
if "dicom_task" in running_tasks:
del running_tasks["dicom_task"]
try:
result = asyncio.run(run_dicom_with_cancellation())
except asyncio.CancelledError:
job_manager.update_job_completion(job_id, False, {"error": "Processing cancelled"})
active_jobs["dicom_task"] = None
return "βΉοΈ DICOM processing cancelled", {}, {}
processing_time = time.time() - start_time
# Extract processing results - fix structure mismatch
if result.get("status") == "success":
# Format the status message with real data from DICOM processor
fhir_bundle = result.get("fhir_bundle", {})
patient_name = result.get("patient_name", "Unknown")
study_description = result.get("study_description", "Unknown")
modality = result.get("modality", "Unknown")
file_size = result.get("file_size", 0)
status = f"""β
**DICOM Processing Complete!**
π **File:** {os.path.basename(dicom_file.name)}
π **Size:** {file_size} bytes
β±οΈ **Processing Time:** {processing_time:.2f}s
π₯ **Modality:** {modality}
π€ **Patient:** {patient_name}
π **Study:** {study_description}
π **FHIR Resources:** {len(fhir_bundle.get('entry', []))} generated"""
# Format analysis data for display
analysis = {
"file_info": {
"filename": os.path.basename(dicom_file.name),
"file_size_bytes": file_size,
"processing_time": result.get('processing_time', 0)
},
"patient_info": {
"name": patient_name
},
"study_info": {
"description": study_description,
"modality": modality
},
"processing_status": "β
Successfully processed",
"processor_used": "DICOM Processor with pydicom",
"pydicom_available": True
}
# Use the FHIR bundle from processor
fhir_imaging = fhir_bundle
# Record successful job completion
job_manager.update_job_completion(job_id, True, {
"processing_time": f"{processing_time:.2f}s",
"patient_name": patient_name,
"modality": modality
})
# Clear active job tracking
active_jobs["dicom_task"] = None
else:
# Handle processing failure
error_msg = result.get("error", "Unknown error")
fallback_used = result.get("fallback_used", False)
processor_info = "DICOM Fallback Processor" if fallback_used else "DICOM Processor"
status = f"""β **DICOM Processing Failed**
π **File:** {os.path.basename(dicom_file.name)}
π« **Error:** {error_msg}
π§ **Processor:** {processor_info}
π‘ **Note:** pydicom library may not be available or file format issue"""
analysis = {
"error": error_msg,
"file_info": {"filename": os.path.basename(dicom_file.name)},
"processing_status": "β Failed",
"processor_used": processor_info,
"fallback_used": fallback_used,
"pydicom_available": not fallback_used
}
fhir_imaging = {}
# Record failed job completion
job_manager.update_job_completion(job_id, False, {"error": error_msg})
# Clear active job tracking
active_jobs["dicom_task"] = None
monitor.log_event("dicom_processing_success", {"filename": dicom_file.name})
return status, analysis, fhir_imaging
except Exception as e:
job_manager.update_job_completion(job_id, False, {"error": str(e)})
active_jobs["dicom_task"] = None
monitor.log_event("dicom_processing_error", {"error": str(e)})
error_analysis = {
"error": str(e),
"file_info": {"filename": os.path.basename(dicom_file.name) if dicom_file else "Unknown"},
"processing_status": "β Exception occurred"
}
return f"β DICOM processing failed: {str(e)}", error_analysis, {}
def cancel_current_task(task_type):
"""Cancel current processing task"""
global cancellation_flags, running_tasks, task_queues, active_jobs
# DEBUG: log state before cancellation
monitor.log_event("cancel_state_before", {
"task_type": task_type,
"cancellation_flags": cancellation_flags.copy(),
"active_jobs": active_jobs.copy(),
"task_queues": {k: len(v) for k, v in task_queues.items()}
})
# Set cancellation flag
cancellation_flags[task_type] = True
# Cancel the actual running task if it exists
if running_tasks[task_type] is not None:
try:
running_tasks[task_type].cancel()
running_tasks[task_type] = None
except Exception as e:
print(f"Error cancelling task {task_type}: {e}")
# Clear the task queue for this task type to prevent new tasks from starting
if task_queues.get(task_type):
task_queues[task_type].clear()
# Reset active job tracking for this task type
active_jobs[task_type] = None
# Reset active tasks counter
if dashboard_state["active_tasks"] > 0:
dashboard_state["active_tasks"] -= 1
monitor.log_event("task_cancelled", {"task_type": task_type})
# DEBUG: log state after cancellation
monitor.log_event("cancel_state_after", {
"task_type": task_type,
"cancellation_flags": cancellation_flags.copy(),
"active_jobs": active_jobs.copy(),
"task_queues": {k: len(v) for k, v in task_queues.items()}
})
return f"βΉοΈ Cancelled {task_type}"
# DEBUG: log state before cancellation
monitor.log_event("cancel_state_before", {
"task_type": task_type,
"cancellation_flags": cancellation_flags.copy(),
"active_jobs": active_jobs.copy(),
"task_queues": {k: len(v) for k, v in task_queues.items()}
})
# Set cancellation flag
cancellation_flags[task_type] = True
# Cancel the actual running task if it exists
if running_tasks[task_type] is not None:
try:
running_tasks[task_type].cancel()
running_tasks[task_type] = None
except Exception as e:
print(f"Error cancelling task {task_type}: {e}")
# Reset active tasks counter
if dashboard_state["active_tasks"] > 0:
dashboard_state["active_tasks"] -= 1
monitor.log_event("task_cancelled", {"task_type": task_type})
# DEBUG: log state after cancellation
monitor.log_event("cancel_state_after", {
"task_type": task_type,
"cancellation_flags": cancellation_flags.copy(),
"active_jobs": active_jobs.copy(),
"task_queues": {k: len(v) for k, v in task_queues.items()}
})
return f"βΉοΈ Cancelled {task_type}"
def get_dashboard_status():
"""Get current file processing dashboard status"""
return job_manager.get_dashboard_status()
def get_dashboard_metrics():
"""Get file processing metrics for DataFrame display"""
return job_manager.get_dashboard_metrics()
def get_processing_queue():
"""Get processing queue for DataFrame display"""
return job_manager.get_processing_queue()
def get_jobs_history():
"""Get processing jobs history for DataFrame display"""
return job_manager.get_jobs_history()
# Keep the old function for backward compatibility but redirect to new one
def get_files_history():
"""Legacy function - redirects to get_jobs_history()"""
return get_jobs_history()
def get_old_files_history():
"""Get list of recently processed files for dashboard (legacy function)"""
# Return the last 10 processed files
recent_files = dashboard_state["files_processed"][-10:] if dashboard_state["files_processed"] else []
return recent_files
def add_file_to_dashboard(filename, file_type, success, processing_time=None, error=None, entities_found=None):
"""Add a processed file to the dashboard statistics"""
import datetime
file_info = {
"filename": filename,
"file_type": file_type,
"success": success,
"processing_time": processing_time,
"timestamp": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"error": error if not success else None,
"entities_found": entities_found or 0
}
dashboard_state["files_processed"].append(file_info)
dashboard_state["total_files"] += 1
if success:
dashboard_state["successful_files"] += 1
else:
dashboard_state["failed_files"] += 1
dashboard_state["last_update"] = file_info["timestamp"]
# Main application
if __name__ == "__main__":
print("π₯ Starting FhirFlame Medical AI Platform...")
# Import frontend UI components dynamically to avoid circular imports
from frontend_ui import create_medical_ui
# Create the UI using the separated frontend components
demo = create_medical_ui(
process_text_only=process_text_only,
process_file_only=process_file_only,
process_dicom_only=process_dicom_only,
cancel_current_task=cancel_current_task,
get_dashboard_status=get_dashboard_status,
dashboard_state=dashboard_state,
get_dashboard_metrics=get_dashboard_metrics,
get_simple_agent_status=get_simple_agent_status,
get_enhanced_codellama=get_enhanced_codellama,
add_file_to_dashboard=add_file_to_dashboard
)
# Launch the application
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
inbrowser=False,
favicon_path="static/favicon.ico"
)
|