File size: 34,944 Bytes
a963d65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
"""
CodeLlama Processor for FhirFlame
RTX 4090 GPU-optimized medical text processing with CodeLlama 13B-instruct
Enhanced with Pydantic models and clean monitoring integration
NOW WITH REAL OLLAMA INTEGRATION!
"""
import asyncio
import json
import time
import os
import httpx
from typing import Dict, Any, Optional, List, Union
from pydantic import BaseModel, Field
from dotenv import load_dotenv
# Load environment configuration
load_dotenv()
class CodeLlamaProcessor:
"""CodeLlama 13B-instruct processor optimized for RTX 4090 with Pydantic validation"""
def __init__(self):
"""Initialize CodeLlama processor with environment-driven configuration"""
# Load configuration from .env
self.use_real_ollama = os.getenv("USE_REAL_OLLAMA", "false").lower() == "true"
self.ollama_base_url = os.getenv("OLLAMA_BASE_URL", "http://localhost:11434")
self.model_name = os.getenv("OLLAMA_MODEL", "codellama:13b-instruct")
self.max_tokens = int(os.getenv("MAX_TOKENS", "2048"))
self.temperature = float(os.getenv("TEMPERATURE", "0.1"))
self.top_p = float(os.getenv("TOP_P", "0.9"))
self.timeout = int(os.getenv("PROCESSING_TIMEOUT_SECONDS", "300"))
# GPU settings
self.gpu_available = os.getenv("GPU_ENABLED", "true").lower() == "true"
self.vram_allocated = f"{os.getenv('MAX_VRAM_GB', '12')}GB"
print(f"π₯ CodeLlamaProcessor initialized:")
print(f" Real Ollama: {'β
ENABLED' if self.use_real_ollama else 'β MOCK MODE'}")
print(f" Model: {self.model_name}")
print(f" Ollama URL: {self.ollama_base_url}")
async def process_document(self, medical_text: str, document_type: str = "clinical_note", extract_entities: bool = True, generate_fhir: bool = False, source_metadata: Dict[str, Any] = None) -> Dict[str, Any]:
"""Process medical document using CodeLlama 13B-instruct with Pydantic validation"""
from .monitoring import monitor
# Start comprehensive document processing monitoring
with monitor.trace_document_workflow(document_type, len(medical_text)) as trace:
start_time = time.time()
# Handle source metadata (e.g., from Mistral OCR)
source_info = source_metadata or {}
ocr_source = source_info.get("extraction_method", "direct_input")
# Log document processing start with OCR info
monitor.log_document_processing_start(
document_type=document_type,
text_length=len(medical_text),
extract_entities=extract_entities,
generate_fhir=generate_fhir
)
# Log OCR integration if applicable
if ocr_source != "direct_input":
monitor.log_event("ocr_integration", {
"ocr_method": ocr_source,
"text_length": len(medical_text),
"document_type": document_type,
"processing_stage": "pre_entity_extraction"
})
# Real processing implementation with environment-driven behavior
start_processing = time.time()
if self.use_real_ollama:
# **PRIMARY: REAL OLLAMA PROCESSING** with validation logic
try:
print("π₯ Attempting Ollama processing...")
processing_result = await self._process_with_real_ollama(medical_text, document_type)
actual_processing_time = time.time() - start_processing
print(f"β
Ollama processing successful in {actual_processing_time:.2f}s")
except Exception as e:
print(f"β οΈ Ollama processing failed ({e}), falling back to rule-based...")
processing_result = await self._process_with_rules(medical_text)
actual_processing_time = time.time() - start_processing
print(f"β
Rule-based fallback successful in {actual_processing_time:.2f}s")
else:
# Rule-based processing (when Ollama is disabled)
print("π Using rule-based processing (Ollama disabled)")
processing_result = await self._process_with_rules(medical_text)
actual_processing_time = time.time() - start_processing
print(f"β
Rule-based processing completed in {actual_processing_time:.2f}s")
processing_time = time.time() - start_time
# Use results from rule-based processing (always successful)
if extract_entities and processing_result.get("success", True):
raw_extracted = processing_result["extracted_data"]
# Import and create validated medical data using Pydantic
from .fhir_validator import ExtractedMedicalData
medical_data = ExtractedMedicalData(
patient=raw_extracted.get("patient_info", "Unknown Patient"),
conditions=raw_extracted.get("conditions", []),
medications=raw_extracted.get("medications", []),
confidence_score=raw_extracted.get("confidence_score", 0.75)
)
entities_found = len(raw_extracted.get("conditions", [])) + len(raw_extracted.get("medications", []))
quality_score = medical_data.confidence_score
extracted_data = medical_data.model_dump()
# Add processing metadata
extracted_data["_processing_metadata"] = {
"mode": processing_result.get("processing_mode", "rule_based"),
"model": processing_result.get("model_used", "rule_based_nlp"),
"vitals_found": len(raw_extracted.get("vitals", [])),
"procedures_found": len(raw_extracted.get("procedures", []))
}
# Log successful medical processing using centralized monitoring
monitor.log_medical_processing(
entities_found=entities_found,
confidence=quality_score,
processing_time=actual_processing_time,
processing_mode=processing_result.get("processing_mode", "rule_based"),
model_used=processing_result.get("model_used", "rule_based_nlp")
)
else:
# Fallback if processing failed
entities_found = 0
quality_score = 0.0
extracted_data = {"error": "Processing failed", "mode": "error_fallback"}
# Generate FHIR bundle using Pydantic validator
fhir_bundle = None
fhir_generated = False
if generate_fhir:
from .fhir_validator import FhirValidator
validator = FhirValidator()
bundle_data = {
'patient_name': extracted_data.get('patient', 'Unknown Patient'),
'conditions': extracted_data.get('conditions', [])
}
# Generate FHIR bundle with monitoring
fhir_start_time = time.time()
fhir_bundle = validator.generate_fhir_bundle(bundle_data)
fhir_generation_time = time.time() - fhir_start_time
fhir_generated = True
# Log FHIR bundle generation using centralized monitoring
monitor.log_fhir_bundle_generation(
patient_resources=1 if extracted_data.get('patient') != 'Unknown Patient' else 0,
condition_resources=len(extracted_data.get('conditions', [])),
observation_resources=0, # Not generating observations yet
generation_time=fhir_generation_time,
success=fhir_bundle is not None
)
# Log document processing completion using centralized monitoring
monitor.log_document_processing_complete(
success=processing_result["success"] if processing_result else False,
processing_time=processing_time,
entities_found=entities_found,
fhir_generated=fhir_generated,
quality_score=quality_score
)
result = {
"metadata": {
"model_used": self.model_name,
"gpu_used": "RTX_4090",
"vram_used": self.vram_allocated,
"processing_time": processing_time,
"source_metadata": source_info
},
"extraction_results": {
"entities_found": entities_found,
"quality_score": quality_score,
"confidence_score": 0.95,
"ocr_source": ocr_source
},
"extracted_data": json.dumps(extracted_data)
}
# Add FHIR bundle only if generated
if fhir_bundle:
result["fhir_bundle"] = fhir_bundle
return result
async def process_medical_text_codellama(self, medical_text: str) -> Dict[str, Any]:
"""Legacy method - use process_document instead"""
result = await self.process_document(medical_text)
return {
"success": True,
"model_used": result["metadata"]["model_used"],
"gpu_used": result["metadata"]["gpu_used"],
"vram_used": result["metadata"]["vram_used"],
"processing_time": result["metadata"]["processing_time"],
"extracted_data": result["extracted_data"]
}
def get_memory_info(self) -> Dict[str, Any]:
"""Get GPU memory information"""
return {
"total_vram": "24GB",
"allocated_vram": self.vram_allocated,
"available_vram": "12GB",
"memory_efficient": True
}
async def _process_with_real_ollama(self, medical_text: str, document_type: str) -> Dict[str, Any]:
"""π REAL OLLAMA PROCESSING - This is the breakthrough!"""
from .monitoring import monitor
# Use centralized AI processing monitoring
with monitor.trace_ai_processing(
model=self.model_name,
text_length=len(medical_text),
temperature=self.temperature,
max_tokens=self.max_tokens
) as trace:
# Validate input text before processing
if not medical_text or len(medical_text.strip()) < 10:
# Return structure consistent with successful processing
extracted_data = {
"patient_info": "No data available",
"conditions": [],
"medications": [],
"vitals": [],
"procedures": [],
"confidence_score": 0.0,
"extraction_summary": "Insufficient medical text for analysis",
"entities_found": 0
}
return {
"processing_mode": "real_ollama",
"model_used": self.model_name,
"extracted_data": extracted_data,
"raw_response": "Input too short for processing",
"success": True,
"api_time": 0.0,
"insufficient_input": True,
"reason": "Input text too short or empty"
}
# Prepare the medical analysis prompt
prompt = f"""You are a medical AI assistant specializing in clinical text analysis and FHIR data extraction.
CRITICAL RULES:
- ONLY extract information that is explicitly present in the provided text
- DO NOT generate, invent, or create any medical information
- If no medical data is found, return empty arrays and "No data available"
- DO NOT use examples or placeholder data
TASK: Analyze the following medical text and extract structured medical information.
MEDICAL TEXT:
{medical_text}
Please extract and return a JSON response with the following structure:
{{
"patient_info": "Patient name or identifier if found, otherwise 'No data available'",
"conditions": ["list", "of", "medical", "conditions", "only", "if", "found"],
"medications": ["list", "of", "medications", "only", "if", "found"],
"vitals": ["list", "of", "vital", "signs", "only", "if", "found"],
"procedures": ["list", "of", "procedures", "only", "if", "found"],
"confidence_score": 0.85,
"extraction_summary": "Brief summary of what was actually found (not generated)"
}}
Focus on medical accuracy and FHIR R4 compliance. Return only valid JSON. DO NOT GENERATE FAKE DATA."""
try:
# Make real HTTP request to Ollama API
api_start_time = time.time()
# Use the configured Ollama URL directly (already corrected in .env)
ollama_url = self.ollama_base_url
print(f"π₯ DEBUG: Using Ollama URL: {ollama_url}")
# Validate that we have the correct model loaded
async with httpx.AsyncClient(timeout=10) as test_client:
try:
# Check what models are available
models_response = await test_client.get(f"{ollama_url}/api/tags")
if models_response.status_code == 200:
models_data = models_response.json()
available_models = [model.get("name", "") for model in models_data.get("models", [])]
print(f"π DEBUG: Available models: {available_models}")
if self.model_name not in available_models:
error_msg = f"β Model {self.model_name} not found. Available: {available_models}"
print(error_msg)
raise Exception(error_msg)
else:
print(f"β οΈ Could not check available models: {models_response.status_code}")
except Exception as model_check_error:
print(f"β οΈ Model availability check failed: {model_check_error}")
# Continue anyway, but log the issue
async with httpx.AsyncClient(timeout=self.timeout) as client:
response = await client.post(
f"{ollama_url}/api/generate",
json={
"model": self.model_name,
"prompt": prompt,
"stream": False,
"options": {
"temperature": self.temperature,
"top_p": self.top_p,
"num_predict": self.max_tokens
}
}
)
api_time = time.time() - api_start_time
# Log API call using centralized monitoring
monitor.log_ollama_api_call(
model=self.model_name,
url=ollama_url,
prompt_length=len(prompt),
success=response.status_code == 200,
response_time=api_time,
status_code=response.status_code,
error=None if response.status_code == 200 else response.text
)
if response.status_code == 200:
result = response.json()
generated_text = result.get("response", "")
# Parse JSON from model response
parsing_start = time.time()
try:
# Extract JSON from the response (model might add extra text)
json_start = generated_text.find('{')
json_end = generated_text.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
json_str = generated_text[json_start:json_end]
raw_extracted_data = json.loads(json_str)
# Transform complex AI response to simple format for Pydantic compatibility
transformation_start = time.time()
extracted_data = self._transform_ai_response(raw_extracted_data)
transformation_time = time.time() - transformation_start
# Log successful parsing using centralized monitoring
parsing_time = time.time() - parsing_start
entities_found = len(extracted_data.get("conditions", [])) + len(extracted_data.get("medications", []))
monitor.log_ai_parsing(
success=True,
response_format="json",
entities_extracted=entities_found,
parsing_time=parsing_time
)
# Log data transformation
monitor.log_data_transformation(
input_format="complex_nested_json",
output_format="pydantic_compatible",
entities_transformed=entities_found,
transformation_time=transformation_time,
complex_nested=isinstance(raw_extracted_data.get("patient_info"), dict)
)
# Log AI generation success
monitor.log_ai_generation(
model=self.model_name,
response_length=len(generated_text),
processing_time=api_time,
entities_found=entities_found,
confidence=extracted_data.get("confidence_score", 0.0),
processing_mode="real_ollama"
)
else:
raise ValueError("No valid JSON found in response")
except (json.JSONDecodeError, ValueError) as e:
# Log parsing failure using centralized monitoring
monitor.log_ai_parsing(
success=False,
response_format="malformed_json",
entities_extracted=0,
parsing_time=time.time() - parsing_start,
error=str(e)
)
print(f"β οΈ JSON parsing failed: {e}")
print(f"Raw response: {generated_text[:200]}...")
# Fall back to rule-based extraction
return await self._process_with_rules(medical_text)
# Update trace with success
if trace:
trace.update(output={
"status": "success",
"processing_mode": "real_ollama",
"entities_extracted": len(extracted_data.get("conditions", [])) + len(extracted_data.get("medications", [])),
"api_time": api_time,
"confidence": extracted_data.get("confidence_score", 0.0)
})
return {
"processing_mode": "real_ollama",
"model_used": self.model_name,
"extracted_data": extracted_data,
"raw_response": generated_text[:500], # First 500 chars for debugging
"success": True,
"api_time": api_time
}
else:
error_msg = f"Ollama API returned {response.status_code}: {response.text}"
raise Exception(error_msg)
except Exception as e:
print(f"β Real Ollama processing failed: {e}")
raise e
async def _process_with_rules(self, medical_text: str) -> Dict[str, Any]:
"""π Rule-based processing fallback (enhanced from original)"""
from .monitoring import monitor
# Start monitoring for rule-based processing
with monitor.trace_operation("rule_based_processing", {
"text_length": len(medical_text),
"processing_mode": "fallback"
}) as trace:
start_time = time.time()
# Enhanced rule-based extraction with comprehensive medical patterns
import re
medical_text_lower = medical_text.lower()
# Extract patient information with name parsing
patient_info = "Unknown Patient"
patient_dob = None
# Look for patient name patterns
patient_patterns = [
r"patient:\s*([^\n\r]+)",
r"name:\s*([^\n\r]+)",
r"pt:\s*([^\n\r]+)"
]
for pattern in patient_patterns:
match = re.search(pattern, medical_text_lower)
if match:
patient_info = match.group(1).strip().title()
break
# Extract date of birth with multiple patterns
dob_patterns = [
r"dob:\s*([^\n\r]+)",
r"date of birth:\s*([^\n\r]+)",
r"born:\s*([^\n\r]+)",
r"birth date:\s*([^\n\r]+)"
]
for pattern in dob_patterns:
match = re.search(pattern, medical_text_lower)
if match:
patient_dob = match.group(1).strip()
break
# Enhanced condition detection with context
condition_keywords = [
"hypertension", "diabetes", "pneumonia", "asthma", "copd",
"depression", "anxiety", "arthritis", "cancer", "stroke",
"heart disease", "kidney disease", "liver disease", "chest pain",
"acute coronary syndrome", "myocardial infarction", "coronary syndrome",
"myocardial infarction", "angina", "atrial fibrillation"
]
conditions = []
for keyword in condition_keywords:
if keyword in medical_text_lower:
# Try to get the full condition name from context
context_pattern = rf"([^\n\r]*{re.escape(keyword)}[^\n\r]*)"
context_match = re.search(context_pattern, medical_text_lower)
if context_match:
full_condition = context_match.group(1).strip()
conditions.append(full_condition.title())
else:
conditions.append(keyword.title())
# Enhanced medication detection with dosages
medication_patterns = [
r"([a-zA-Z]+)\s+(\d+(?:\.\d+)?)\s*(mg|g|ml|units?)\s+(daily|twice daily|bid|tid|qid|every \d+ hours?|once daily|nightly)",
r"([a-zA-Z]+)\s+(\d+(?:\.\d+)?)\s*(mg|g|ml|units?)",
r"([a-zA-Z]+)\s+(daily|twice daily|bid|tid|qid|nightly)"
]
medications = []
# Look for complete medication entries with dosages
med_lines = [line.strip() for line in medical_text.split('\n') if line.strip()]
for line in med_lines:
line_lower = line.lower()
# Check if line contains medication information
if any(word in line_lower for word in ['mg', 'daily', 'twice', 'bid', 'tid', 'aspirin', 'lisinopril', 'atorvastatin', 'metformin']):
for pattern in medication_patterns:
matches = re.finditer(pattern, line_lower)
for match in matches:
if len(match.groups()) >= 3:
med_name = match.group(1).title()
dose = match.group(2)
unit = match.group(3)
frequency = match.group(4) if len(match.groups()) >= 4 else ""
full_med = f"{med_name} {dose} {unit} {frequency}".strip()
medications.append(full_med)
elif len(match.groups()) >= 2:
med_name = match.group(1).title()
dose_info = match.group(2)
full_med = f"{med_name} {dose_info}".strip()
medications.append(full_med)
# If no pattern matched, try simple medication detection
if not any(med in line for med in medications):
simple_meds = ["aspirin", "lisinopril", "atorvastatin", "metformin", "metoprolol"]
for med in simple_meds:
if med in line_lower:
medications.append(line.strip())
break
# Enhanced vital signs detection
vitals = []
vital_patterns = [
"blood pressure", "bp", "heart rate", "hr", "temperature",
"temp", "oxygen saturation", "o2 sat", "respiratory rate", "rr"
]
for pattern in vital_patterns:
if pattern in medical_text_lower:
vitals.append(pattern.title())
# Calculate proper confidence score based on data quality and completeness
base_confidence = 0.7
# Add confidence for patient info completeness
if patient_info != "Unknown Patient":
base_confidence += 0.1
if patient_dob:
base_confidence += 0.05
# Add confidence for medical data found
entity_bonus = min(0.15, (len(conditions) + len(medications)) * 0.02)
base_confidence += entity_bonus
# Bonus for detailed medication information (with dosages)
detailed_meds = sum(1 for med in medications if any(unit in med.lower() for unit in ['mg', 'g', 'ml', 'daily', 'twice']))
if detailed_meds > 0:
base_confidence += min(0.1, detailed_meds * 0.03)
final_confidence = min(0.95, base_confidence)
extracted_data = {
"patient": patient_info,
"patient_info": patient_info,
"date_of_birth": patient_dob,
"conditions": conditions,
"medications": medications,
"vitals": vitals,
"procedures": [], # Could enhance this too
"confidence_score": final_confidence,
"extraction_summary": f"Enhanced extraction found {len(conditions)} conditions, {len(medications)} medications, {len(vitals)} vitals" + (f", DOB: {patient_dob}" if patient_dob else ""),
"extraction_quality": {
"patient_identified": patient_info != "Unknown Patient",
"dob_found": bool(patient_dob),
"detailed_medications": detailed_meds,
"total_entities": len(conditions) + len(medications) + len(vitals)
}
}
processing_time = time.time() - start_time
# Log rule-based processing using centralized monitoring
monitor.log_rule_based_processing(
entities_found=len(conditions) + len(medications),
conditions=len(conditions),
medications=len(medications),
vitals=len(vitals),
confidence=extracted_data["confidence_score"],
processing_time=processing_time
)
# Log medical entity extraction details
monitor.log_medical_entity_extraction(
conditions=len(conditions),
medications=len(medications),
vitals=len(vitals),
procedures=0,
patient_info_found=patient_info != "Unknown Patient",
confidence=extracted_data["confidence_score"]
)
# Update trace with results
if trace:
trace.update(output={
"status": "success",
"processing_mode": "rule_based_fallback",
"entities_extracted": len(conditions) + len(medications),
"processing_time": processing_time,
"confidence": extracted_data["confidence_score"]
})
return {
"processing_mode": "rule_based_fallback",
"model_used": "rule_based_nlp",
"extracted_data": extracted_data,
"success": True,
"processing_time": processing_time
}
def _transform_ai_response(self, raw_data: dict) -> dict:
"""Transform complex AI response to Pydantic-compatible format"""
# Initialize with defaults
transformed = {
"patient_info": "Unknown Patient",
"conditions": [],
"medications": [],
"vitals": [],
"procedures": [],
"confidence_score": 0.75
}
# Transform patient information
patient_info = raw_data.get("patient_info", {})
if isinstance(patient_info, dict):
# Extract from nested structure
name = patient_info.get("name", "")
if not name and "given" in patient_info and "family" in patient_info:
name = f"{' '.join(patient_info.get('given', []))} {patient_info.get('family', '')}"
transformed["patient_info"] = name or "Unknown Patient"
elif isinstance(patient_info, str):
transformed["patient_info"] = patient_info
# Transform conditions
conditions = raw_data.get("conditions", [])
transformed_conditions = []
for condition in conditions:
if isinstance(condition, dict):
# Extract from complex structure
name = condition.get("name") or condition.get("display") or condition.get("text", "")
if name:
transformed_conditions.append(name)
elif isinstance(condition, str):
transformed_conditions.append(condition)
transformed["conditions"] = transformed_conditions
# Transform medications
medications = raw_data.get("medications", [])
transformed_medications = []
for medication in medications:
if isinstance(medication, dict):
# Extract from complex structure
name = medication.get("name") or medication.get("display") or medication.get("text", "")
dosage = medication.get("dosage") or medication.get("dose", "")
frequency = medication.get("frequency", "")
# Combine medication info
med_str = name
if dosage:
med_str += f" {dosage}"
if frequency:
med_str += f" {frequency}"
if med_str.strip():
transformed_medications.append(med_str.strip())
elif isinstance(medication, str):
transformed_medications.append(medication)
transformed["medications"] = transformed_medications
# Transform vitals (if present)
vitals = raw_data.get("vitals", [])
transformed_vitals = []
for vital in vitals:
if isinstance(vital, dict):
name = vital.get("name") or vital.get("type", "")
value = vital.get("value", "")
unit = vital.get("unit", "")
vital_str = name
if value:
vital_str += f": {value}"
if unit:
vital_str += f" {unit}"
if vital_str.strip():
transformed_vitals.append(vital_str.strip())
elif isinstance(vital, str):
transformed_vitals.append(vital)
transformed["vitals"] = transformed_vitals
# Preserve confidence score
confidence = raw_data.get("confidence_score", 0.75)
if isinstance(confidence, (int, float)):
transformed["confidence_score"] = min(max(confidence, 0.0), 1.0)
# Generate summary
total_entities = len(transformed["conditions"]) + len(transformed["medications"]) + len(transformed["vitals"])
transformed["extraction_summary"] = f"AI extraction found {total_entities} entities: {len(transformed['conditions'])} conditions, {len(transformed['medications'])} medications, {len(transformed['vitals'])} vitals"
return transformed
# Make class available for import
__all__ = ["CodeLlamaProcessor"] |