File size: 41,219 Bytes
a963d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
"""
Local Processor for FhirFlame Development
Core logic with optional Mistral API OCR and multimodal fallbacks
"""

import asyncio
import json
import uuid
import os
import io
import base64
from datetime import datetime
from typing import Dict, Any, Optional, List
from .monitoring import monitor

# PDF and Image Processing
try:
    from pdf2image import convert_from_bytes
    from PIL import Image
    import PyPDF2
    PDF_PROCESSING_AVAILABLE = True
except ImportError:
    PDF_PROCESSING_AVAILABLE = False

class LocalProcessor:
    """Local processor with optional external fallbacks"""
    
    def __init__(self):
        self.use_mistral_fallback = os.getenv("USE_MISTRAL_FALLBACK", "false").lower() == "true"
        self.use_multimodal_fallback = os.getenv("USE_MULTIMODAL_FALLBACK", "false").lower() == "true"
        self.mistral_api_key = os.getenv("MISTRAL_API_KEY")
        
    @monitor.track_operation("real_document_processing")
    async def process_document(self, document_bytes: bytes, user_id: str, filename: str) -> Dict[str, Any]:
        """Process document with fallback capabilities and quality assertions"""
        
        # Try external OCR if enabled and available
        extracted_text = await self._extract_text_with_fallback(document_bytes, filename)
        
        # Log OCR quality metrics
        monitor.log_event("ocr_text_extracted", {
            "text_extracted": len(extracted_text) > 0,
            "text_length": len(extracted_text),
            "filename": filename
        })
        monitor.log_event("ocr_minimum_length", {
            "substantial_text": len(extracted_text) > 50,
            "text_length": len(extracted_text)
        })
        
        # Extract medical entities from text
        entities = self._extract_medical_entities(extracted_text)
        
        # Log medical entity extraction
        monitor.log_event("medical_entities_found", {
            "entities_found": len(entities) > 0,
            "entity_count": len(entities)
        })
        
        # Create FHIR bundle
        fhir_bundle = self._create_simple_fhir_bundle(entities, user_id)
        
        # Log FHIR validation
        monitor.log_event("fhir_bundle_valid", {
            "bundle_valid": fhir_bundle.get("resourceType") == "Bundle",
            "resource_type": fhir_bundle.get("resourceType")
        })
        monitor.log_event("fhir_has_entries", {
            "has_entries": len(fhir_bundle.get("entry", [])) > 0,
            "entry_count": len(fhir_bundle.get("entry", []))
        })
        
        # Log processing with enhanced metrics
        monitor.log_medical_processing(
            entities_found=len(entities),
            confidence=0.85,
            processing_time=100.0,
            processing_mode="file_processing",
            model_used="enhanced_processor"
        )
        
        return {
            "status": "success",
            "processing_mode": self._get_processing_mode(),
            "filename": filename,
            "processed_by": user_id,
            "entities_found": len(entities),
            "fhir_bundle": fhir_bundle,
            "extracted_text": extracted_text[:500] + "..." if len(extracted_text) > 500 else extracted_text,
            "text_length": len(extracted_text)
        }
    
    async def _extract_text_with_fallback(self, document_bytes: bytes, filename: str) -> str:
        """Extract text with optional fallbacks"""
        
        # Try Mistral API OCR first if enabled
        if self.use_mistral_fallback and self.mistral_api_key:
            try:
                monitor.log_event("mistral_attempt_start", {
                    "document_size": len(document_bytes),
                    "api_key_present": bool(self.mistral_api_key),
                    "use_mistral_fallback": self.use_mistral_fallback
                })
                result = await self._extract_with_mistral(document_bytes)
                monitor.log_event("mistral_success_in_fallback", {
                    "text_length": len(result),
                    "text_preview": result[:100] + "..." if len(result) > 100 else result
                })
                return result
            except Exception as e:
                import traceback
                monitor.log_event("mistral_fallback_failed", {
                    "error": str(e),
                    "error_type": type(e).__name__,
                    "traceback": traceback.format_exc(),
                    "document_size": len(document_bytes),
                    "api_key_format": f"{self.mistral_api_key[:8]}...{self.mistral_api_key[-4:]}" if self.mistral_api_key else "none"
                })
                print(f"🚨 MISTRAL API FAILED: {type(e).__name__}: {str(e)}")
                print(f"🚨 Full traceback: {traceback.format_exc()}")
        
        # Try multimodal processor if enabled
        if self.use_multimodal_fallback:
            try:
                return await self._extract_with_multimodal(document_bytes)
            except Exception as e:
                monitor.log_event("multimodal_fallback_failed", {"error": str(e)})
        
        # CRITICAL: No dummy data in production - fail properly when OCR fails
        raise Exception(f"Document text extraction failed for {filename}. All OCR methods exhausted. Cannot return dummy data for real medical processing.")
    
    def _convert_pdf_to_images(self, pdf_bytes: bytes) -> List[bytes]:
        """Convert PDF to list of image bytes for Mistral vision processing"""
        if not PDF_PROCESSING_AVAILABLE:
            raise Exception("PDF processing libraries not available. Install pdf2image, Pillow, and PyPDF2.")
        
        try:
            # Convert PDF pages to PIL Images
            monitor.log_event("pdf_conversion_debug", {
                "step": "starting_pdf_conversion",
                "pdf_size": len(pdf_bytes)
            })
            
            # Convert PDF to images (300 DPI for good OCR quality)
            images = convert_from_bytes(pdf_bytes, dpi=300, fmt='PNG')
            
            monitor.log_event("pdf_conversion_debug", {
                "step": "pdf_converted_to_images",
                "page_count": len(images),
                "image_sizes": [(img.width, img.height) for img in images]
            })
            
            # Convert PIL Images to bytes
            image_bytes_list = []
            for i, img in enumerate(images):
                # Convert to RGB if necessary (for JPEG compatibility)
                if img.mode != 'RGB':
                    img = img.convert('RGB')
                
                # Save as high-quality JPEG bytes
                img_byte_arr = io.BytesIO()
                img.save(img_byte_arr, format='JPEG', quality=95)
                img_bytes = img_byte_arr.getvalue()
                image_bytes_list.append(img_bytes)
                
                monitor.log_event("pdf_conversion_debug", {
                    "step": f"page_{i+1}_converted",
                    "page_size": len(img_bytes),
                    "dimensions": f"{img.width}x{img.height}"
                })
            
            monitor.log_event("pdf_conversion_success", {
                "total_pages": len(image_bytes_list),
                "total_size": sum(len(img_bytes) for img_bytes in image_bytes_list)
            })
            
            return image_bytes_list
            
        except Exception as e:
            monitor.log_event("pdf_conversion_error", {
                "error": str(e),
                "error_type": type(e).__name__
            })
            raise Exception(f"PDF to image conversion failed: {str(e)}")

    async def _extract_with_mistral(self, document_bytes: bytes) -> str:
        """Extract text using Mistral OCR API - using proper document understanding endpoint"""
        import httpx
        import base64
        import tempfile
        import os
        
        # πŸ” DEBUGGING: Log entry to Mistral OCR function
        monitor.log_event("mistral_ocr_start", {
            "document_size": len(document_bytes),
            "api_key_present": bool(self.mistral_api_key),
            "api_key_format": f"sk-...{self.mistral_api_key[-4:]}" if self.mistral_api_key else "none"
        })
        
        # Detect file type and extension
        def detect_file_info(data: bytes) -> tuple[str, str]:
            if data.startswith(b'%PDF'):
                return "application/pdf", ".pdf"
            elif data.startswith(b'\xff\xd8\xff'):  # JPEG
                return "image/jpeg", ".jpg"
            elif data.startswith(b'\x89PNG\r\n\x1a\n'):  # PNG
                return "image/png", ".png"
            elif data.startswith(b'GIF87a') or data.startswith(b'GIF89a'):  # GIF
                return "image/gif", ".gif"
            elif data.startswith(b'BM'):  # BMP
                return "image/bmp", ".bmp"
            elif data.startswith(b'RIFF') and b'WEBP' in data[:12]:  # WEBP
                return "image/webp", ".webp"
            elif data.startswith(b'II*\x00') or data.startswith(b'MM\x00*'):  # TIFF
                return "image/tiff", ".tiff"
            elif data.startswith(b'\xd0\xcf\x11\xe0\xa1\xb1\x1a\xe1'):  # DOC (OLE2)
                return "application/msword", ".doc"
            elif data.startswith(b'PK\x03\x04') and b'word/' in data[:1000]:  # DOCX
                return "application/vnd.openxmlformats-officedocument.wordprocessingml.document", ".docx"
            else:
                return "application/pdf", ".pdf"
        
        mime_type, file_ext = detect_file_info(document_bytes)
        
        # πŸ” DEBUGGING: Log document analysis
        monitor.log_event("mistral_ocr_debug", {
            "step": "document_analysis",
            "mime_type": mime_type,
            "file_extension": file_ext,
            "document_size": len(document_bytes),
            "document_start": document_bytes[:100].hex()[:50] + "..." if len(document_bytes) > 50 else document_bytes.hex()
        })
        
        try:
            # πŸ” DEBUGGING: Log exact HTTP request details
            monitor.log_event("mistral_http_debug", {
                "step": "preparing_http_client",
                "api_endpoint": "https://api.mistral.ai/v1/chat/completions",
                "api_key_prefix": f"{self.mistral_api_key[:8]}..." if self.mistral_api_key else "none",
                "timeout": 180.0,
                "client_config": "httpx.AsyncClient() with default settings"
            })
            
            async with httpx.AsyncClient() as client:
                
                # Handle PDF conversion to images
                if mime_type == "application/pdf":
                    monitor.log_event("mistral_ocr_debug", {
                        "step": "pdf_detected_converting_to_images",
                        "pdf_size": len(document_bytes)
                    })
                    
                    # Convert PDF to images
                    try:
                        image_bytes_list = self._convert_pdf_to_images(document_bytes)
                        monitor.log_event("mistral_ocr_debug", {
                            "step": "pdf_conversion_success",
                            "page_count": len(image_bytes_list)
                        })
                    except Exception as pdf_error:
                        monitor.log_event("mistral_ocr_debug", {
                            "step": "pdf_conversion_failed",
                            "error": str(pdf_error)
                        })
                        raise Exception(f"PDF conversion failed: {str(pdf_error)}")
                    
                    # Process each page and combine results
                    all_extracted_text = []
                    
                    for page_num, image_bytes in enumerate(image_bytes_list, 1):
                        monitor.log_event("mistral_ocr_debug", {
                            "step": f"processing_page_{page_num}",
                            "image_size": len(image_bytes)
                        })
                        
                        # Convert image to base64
                        b64_data = base64.b64encode(image_bytes).decode()
                        
                        # πŸ” DEBUGGING: Log exact HTTP request details
                        request_payload = {
                            "model": "pixtral-12b-2409",
                            "messages": [
                                {
                                    "role": "user",
                                    "content": [
                                        {
                                            "type": "text",
                                            "text": f"""You are a strict OCR text extraction tool. Your job is to extract ONLY the actual text that appears in this image - nothing more, nothing less.
        
        CRITICAL RULES:
        - Extract ONLY text that is actually visible in the image
        - Do NOT generate, invent, or create any content
        - Do NOT add examples or sample data
        - Do NOT fill in missing information
        - If the image contains minimal text, return minimal text
        - If the image is blank or contains no medical content, return what you actually see
        
        For page {page_num}, extract exactly what text appears in this image:"""
                                        },
                                        {
                                            "type": "image_url",
                                            "image_url": {
                                                "url": f"data:image/jpeg;base64,{b64_data[:50]}..."  # Truncated for logging
                                            }
                                        }
                                    ]
                                }
                            ],
                            "max_tokens": 8000,
                            "temperature": 0.0
                        }
                        
                        monitor.log_event("mistral_http_request_start", {
                            "step": f"sending_request_page_{page_num}",
                            "url": "https://api.mistral.ai/v1/chat/completions",
                            "method": "POST",
                            "headers_count": 2,
                            "payload_size": len(str(request_payload)),
                            "b64_data_size": len(b64_data),
                            "timeout": min(300.0, 60.0 + (len(b64_data) / 100000)),  # Dynamic timeout: 60s base + 1s per 100KB
                            "estimated_timeout": min(300.0, 60.0 + (len(b64_data) / 100000))
                        })
                        
                        # Calculate dynamic timeout based on image size
                        dynamic_timeout = min(300.0, 60.0 + (len(b64_data) / 100000))  # Max 5 minutes
                        
                        
                        # API call for this page with dynamic timeout
                        response = await client.post(
                            "https://api.mistral.ai/v1/chat/completions",
                            headers={
                                "Authorization": f"Bearer {self.mistral_api_key}",
                                "Content-Type": "application/json"
                            },
                            json={
                                "model": "pixtral-12b-2409",
                                "messages": [
                                    {
                                        "role": "user",
                                        "content": [
                                            {
                                                "type": "text",
                                                "text": f"""You are a strict OCR text extraction tool. Your job is to extract ONLY the actual text that appears in this image - nothing more, nothing less.
        
        CRITICAL RULES:
        - Extract ONLY text that is actually visible in the image
        - Do NOT generate, invent, or create any content
        - Do NOT add examples or sample data
        - Do NOT fill in missing information
        - If the image contains minimal text, return minimal text
        - If the image is blank or contains no medical content, return what you actually see
        
        For page {page_num}, extract exactly what text appears in this image:"""
                                            },
                                            {
                                                "type": "image_url",
                                                "image_url": {
                                                    "url": f"data:image/jpeg;base64,{b64_data}"
                                                }
                                            }
                                        ]
                                    }
                                ],
                                "max_tokens": 8000,
                                "temperature": 0.0
                            },
                            timeout=dynamic_timeout
                        )
                        
                        monitor.log_event("mistral_http_response_received", {
                            "step": f"response_page_{page_num}",
                            "status_code": response.status_code,
                            "response_size": len(response.content),
                            "headers": dict(response.headers),
                            "elapsed_seconds": response.elapsed.total_seconds() if hasattr(response, 'elapsed') else "unknown"
                        })
                        
                        # Process response for this page
                        monitor.log_event("mistral_ocr_debug", {
                            "step": f"page_{page_num}_api_response",
                            "status_code": response.status_code
                        })
                        
                        if response.status_code == 200:
                            result = response.json()
                            if 'choices' in result and len(result['choices']) > 0:
                                message = result['choices'][0].get('message', {})
                                page_text = message.get('content', '').strip()
                                if page_text:
                                    cleaned_text = self._clean_ocr_text(page_text)
                                    all_extracted_text.append(f"[PAGE {page_num}]\n{cleaned_text}")
                                    
                                    monitor.log_event("mistral_ocr_debug", {
                                        "step": f"page_{page_num}_extracted",
                                        "text_length": len(cleaned_text)
                                    })
                        else:
                            monitor.log_event("mistral_ocr_debug", {
                                "step": f"page_{page_num}_api_error",
                                "status_code": response.status_code,
                                "error": response.text
                            })
                            # Continue with other pages even if one fails
                    
                    # Combine all pages
                    if all_extracted_text:
                        combined_text = "\n\n".join(all_extracted_text)
                        monitor.log_event("mistral_ocr_success", {
                            "mime_type": mime_type,
                            "total_pages": len(image_bytes_list),
                            "pages_processed": len(all_extracted_text),
                            "total_text_length": len(combined_text)
                        })
                        return f"[MISTRAL PDF PROCESSED - {len(image_bytes_list)} pages]\n\n{combined_text}"
                    else:
                        raise Exception("No text extracted from any PDF pages")
                
                else:
                    # Handle non-PDF documents (images) - original logic
                    b64_data = base64.b64encode(document_bytes).decode()
                    b64_preview = b64_data[:100] + "..." if len(b64_data) > 100 else b64_data
                    
                    monitor.log_event("mistral_ocr_debug", {
                        "step": "api_call_preparation",
                        "b64_data_length": len(b64_data),
                        "b64_preview": b64_preview,
                        "api_endpoint": "https://api.mistral.ai/v1/chat/completions",
                        "model": "pixtral-12b-2409"
                    })
                    
                    # Calculate dynamic timeout based on image size
                    dynamic_timeout = min(300.0, 60.0 + (len(b64_data) / 100000))  # Max 5 minutes
                    
                    monitor.log_event("mistral_http_request_start", {
                        "step": "sending_request_image",
                        "url": "https://api.mistral.ai/v1/chat/completions",
                        "method": "POST",
                        "mime_type": mime_type,
                        "b64_data_size": len(b64_data),
                        "timeout": dynamic_timeout,
                        "estimated_timeout": dynamic_timeout
                    })
                    
                    
                    response = await client.post(
                        "https://api.mistral.ai/v1/chat/completions",
                        headers={
                            "Authorization": f"Bearer {self.mistral_api_key}",
                            "Content-Type": "application/json"
                        },
                        json={
                            "model": "pixtral-12b-2409",
                            "messages": [
                                {
                                    "role": "user",
                                    "content": [
                                        {
                                            "type": "text",
                                            "text": """You are a strict OCR text extraction tool. Your job is to extract ONLY the actual text that appears in this image - nothing more, nothing less.

CRITICAL RULES:
- Extract ONLY text that is actually visible in the image
- Do NOT generate, invent, or create any content
- Do NOT add examples or sample data
- Do NOT fill in missing information
- If the image contains minimal text, return minimal text
- If the image is blank or contains no medical content, return what you actually see

Extract exactly what text appears in this image:"""
                                        },
                                        {
                                            "type": "image_url",
                                            "image_url": {
                                                "url": f"data:{mime_type};base64,{b64_data}"
                                            }
                                        }
                                    ]
                                }
                            ],
                            "max_tokens": 8000,
                            "temperature": 0.0
                        },
                        timeout=dynamic_timeout
                    )
                    
                    monitor.log_event("mistral_http_response_received", {
                        "step": "response_image",
                        "status_code": response.status_code,
                        "response_size": len(response.content),
                        "headers": dict(response.headers),
                        "elapsed_seconds": response.elapsed.total_seconds() if hasattr(response, 'elapsed') else "unknown"
                    })
                
                # πŸ” DEBUGGING: Log API response
                monitor.log_event("mistral_ocr_debug", {
                    "step": "api_response_received",
                    "status_code": response.status_code,
                    "response_headers": dict(response.headers),
                    "response_size": len(response.content),
                    "response_preview": response.text[:500] + "..." if len(response.text) > 500 else response.text
                })
                
                if response.status_code == 200:
                    result = response.json()
                    
                    # πŸ” DEBUGGING: Log successful response parsing
                    monitor.log_event("mistral_ocr_debug", {
                        "step": "response_parsing_success",
                        "result_keys": list(result.keys()) if isinstance(result, dict) else "not_dict",
                        "choices_count": len(result.get("choices", [])) if isinstance(result, dict) else 0
                    })
                    
                    # Log successful API response
                    monitor.log_event("mistral_api_success", {
                        "status_code": response.status_code,
                        "response_format": "valid"
                    })
                    
                    # Extract text from Mistral chat completion response
                    if 'choices' in result and len(result['choices']) > 0:
                        message = result['choices'][0].get('message', {})
                        extracted_text = message.get('content', '').strip()
                        
                        # Log OCR quality
                        monitor.log_event("mistral_response_has_content", {
                            "has_content": len(extracted_text) > 0,
                            "text_length": len(extracted_text)
                        })
                        
                        if extracted_text:
                            # Clean up the response - remove any OCR processing artifacts
                            cleaned_text = self._clean_ocr_text(extracted_text)
                            
                            # Log cleaned text quality
                            monitor.log_event("mistral_cleaned_text_substantial", {
                                "substantial": len(cleaned_text) > 20,
                                "text_length": len(cleaned_text)
                            })
                            
                            # Log successful OCR metrics
                            monitor.log_event("mistral_ocr_success", {
                                "mime_type": mime_type,
                                "raw_length": len(extracted_text),
                                "cleaned_length": len(cleaned_text),
                                "cleaning_ratio": len(cleaned_text) / len(extracted_text) if extracted_text else 0
                            })
                            
                            return f"[MISTRAL DOCUMENT AI PROCESSED - {mime_type}]\n\n{cleaned_text}"
                        else:
                            monitor.log_event("mistral_ocr_not_empty", {
                                "empty_response": True,
                                "mime_type": mime_type
                            })
                            monitor.log_event("mistral_ocr_empty_response", {"mime_type": mime_type})
                            raise Exception("Mistral OCR returned empty text content")
                    else:
                        monitor.log_event("mistral_response_format_valid", {
                            "format_valid": False,
                            "response_keys": list(result.keys()) if isinstance(result, dict) else "not_dict"
                        })
                        monitor.log_event("mistral_ocr_invalid_response", {"response": result})
                        raise Exception("Invalid response format from Mistral OCR API")
                        
                else:
                    # Handle API errors with detailed logging
                    error_msg = f"Mistral OCR API failed with status {response.status_code}"
                    try:
                        error_details = response.json()
                        error_msg += f": {error_details.get('message', 'Unknown error')}"
                        
                        # Log specific error types for debugging
                        if response.status_code == 401:
                            monitor.log_event("mistral_auth_error", {"error": "Invalid API key"})
                            error_msg = "Mistral OCR authentication failed - check API key"
                        elif response.status_code == 429:
                            monitor.log_event("mistral_rate_limit", {"error": "Rate limit exceeded"})
                            error_msg = "Mistral OCR rate limit exceeded - try again later"
                        elif response.status_code == 413:
                            monitor.log_event("mistral_file_too_large", {"mime_type": mime_type})
                            error_msg = "Document too large for Mistral OCR processing"
                        else:
                            monitor.log_event("mistral_api_error", {
                                "status_code": response.status_code,
                                "error": error_details
                            })
                            
                    except Exception:
                        error_text = response.text
                        error_msg += f": {error_text}"
                        monitor.log_event("mistral_unknown_error", {
                            "status_code": response.status_code,
                            "response": error_text
                        })
                    
                    raise Exception(error_msg)
                    
        except Exception as e:
            # πŸ” DEBUGGING: Log exception details
            monitor.log_event("mistral_ocr_debug", {
                "step": "exception_caught",
                "exception_type": type(e).__name__,
                "exception_message": str(e),
                "exception_details": {
                    "args": e.args if hasattr(e, 'args') else "no_args",
                    "traceback_summary": f"{type(e).__name__}: {str(e)}"
                }
            })
            
            # Re-raise with context for better debugging
            raise Exception(f"Mistral OCR processing failed: {str(e)}")
    
    def _clean_ocr_text(self, text: str) -> str:
        """Clean up OCR text output for medical documents"""
        # Remove common OCR artifacts while preserving medical formatting
        cleaned = text.strip()
        
        # Remove any instruction responses or commentary
        lines = cleaned.split('\n')
        cleaned_lines = []
        
        skip_patterns = [
            "here is the extracted text",
            "the extracted text is:",
            "extracted text:",
            "text content:",
            "document content:",
        ]
        
        for line in lines:
            line_lower = line.lower().strip()
            should_skip = any(pattern in line_lower for pattern in skip_patterns)
            
            if not should_skip and line.strip():
                cleaned_lines.append(line)
        
        return '\n'.join(cleaned_lines)
    
    async def _extract_with_multimodal(self, document_bytes: bytes) -> str:
        """Extract text using multimodal processor (simplified)"""
        import base64
        import sys
        import os
        
        # Add gaia system to path
        gaia_path = os.path.join(os.path.dirname(__file__), "..", "..", "..", "gaia_agentic_system")
        if gaia_path not in sys.path:
            sys.path.append(gaia_path)
        
        try:
            from mcp_servers.multi_modal_processor_server import MultiModalProcessorServer
            
            # Create processor instance
            processor = MultiModalProcessorServer()
            processor.initialize()
            
            # Convert to base64
            b64_data = base64.b64encode(document_bytes).decode()
            
            # Analyze image for text extraction
            result = await processor._analyze_image({
                "image_data": b64_data,
                "analysis_type": "text_extraction"
            })
            
            return result.get("extracted_text", "")
            
        except Exception as e:
            raise Exception(f"Multimodal processor failed: {str(e)}")
    
    # Mock text method removed - never return dummy data for real medical processing
    
    def _extract_medical_entities(self, text: str) -> dict:
        """Extract medical entities from actual OCR text using regex patterns"""
        import re
        
        entities = {
            "patient_name": "Undefined",
            "date_of_birth": "Undefined",
            "conditions": [],
            "medications": [],
            "vitals": [],
            "provider_name": "Undefined"
        }
        
        # Pattern for names (capitalized words, typically 2-3 parts)
        name_patterns = [
            r'Patient:?\s*([A-Z][a-z]+ [A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)',
            r'Name:?\s*([A-Z][a-z]+ [A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)',
            r'([A-Z][a-z]+,\s*[A-Z][a-z]+(?:\s+[A-Z][a-z]+)?)',
        ]
        
        for pattern in name_patterns:
            match = re.search(pattern, text)
            if match:
                entities["patient_name"] = match.group(1).strip()
                break
        
        # Pattern for dates of birth
        dob_patterns = [
            r'(?:DOB|Date of Birth|Born):?\s*(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})',
            r'(?:DOB|Date of Birth|Born):?\s*(\d{1,2}/\d{1,2}/\d{2,4})',
            r'(?:DOB|Date of Birth|Born):?\s*([A-Z][a-z]+ \d{1,2},? \d{4})'
        ]
        
        for pattern in dob_patterns:
            match = re.search(pattern, text, re.IGNORECASE)
            if match:
                entities["date_of_birth"] = match.group(1).strip()
                break
        
        # Pattern for medical conditions
        condition_keywords = [
            r'(?:Diagnosis|Condition|History):?\s*([A-Z][a-z]+(?: [a-z]+)*)',
            r'([A-Z][a-z]+(?:itis|osis|emia|pathy|trophy|plasia))',
            r'(Hypertension|Diabetes|Asthma|COPD|Depression|Anxiety)'
        ]
        
        for pattern in condition_keywords:
            matches = re.findall(pattern, text, re.IGNORECASE)
            for match in matches:
                condition = match if isinstance(match, str) else match[0]
                if condition and len(condition) > 2:
                    entities["conditions"].append(condition.strip())
        
        # Pattern for medications
        med_patterns = [
            r'(?:Medication|Med|Rx):?\s*([A-Z][a-z]+(?:ol|ine|ide|ate|pril|statin))',
            r'([A-Z][a-z]+(?:ol|ine|ide|ate|pril|statin))\s*\d+\s*mg',
            r'(Lisinopril|Metformin|Aspirin|Ibuprofen|Acetaminophen)'
        ]
        
        for pattern in med_patterns:
            matches = re.findall(pattern, text, re.IGNORECASE)
            for match in matches:
                medication = match if isinstance(match, str) else match[0]
                if medication and len(medication) > 2:
                    entities["medications"].append(medication.strip())
        
        # Pattern for vital signs
        vital_patterns = [
            r'(?:BP|Blood Pressure):?\s*(\d{2,3}/\d{2,3})',
            r'(?:Heart Rate|HR):?\s*(\d{2,3})\s*bpm',
            r'(?:Temperature|Temp):?\s*(\d{2,3}(?:\.\d)?)\s*Β°?F?',
            r'(?:Weight):?\s*(\d{2,3})\s*lbs?',
            r'(?:Height):?\s*(\d+)\'?\s*(\d+)"?'
        ]
        
        for pattern in vital_patterns:
            matches = re.findall(pattern, text, re.IGNORECASE)
            for match in matches:
                vital = match if isinstance(match, str) else ' '.join(filter(None, match))
                if vital:
                    entities["vitals"].append(vital.strip())
        
        # Pattern for provider/doctor names
        provider_patterns = [
            r'(?:Dr\.|Doctor|Physician):?\s*([A-Z][a-z]+ [A-Z][a-z]+)',
            r'Provider:?\s*([A-Z][a-z]+ [A-Z][a-z]+)',
            r'Attending:?\s*([A-Z][a-z]+ [A-Z][a-z]+)'
        ]
        
        for pattern in provider_patterns:
            match = re.search(pattern, text)
            if match:
                entities["provider_name"] = match.group(1).strip()
                break
        
        return entities
    
    def _create_simple_fhir_bundle(self, entities: dict, user_id: str) -> dict:
        """Create FHIR bundle from extracted entities"""
        bundle_id = f"local-{uuid.uuid4()}"
        
        # Parse patient name
        patient_name = entities.get("patient_name", "Undefined")
        if patient_name != "Undefined" and " " in patient_name:
            name_parts = patient_name.split()
            given_name = name_parts[0] if len(name_parts) > 0 else "Undefined"
            family_name = " ".join(name_parts[1:]) if len(name_parts) > 1 else "Undefined"
        else:
            given_name = "Undefined"
            family_name = "Undefined"
        
        # Create bundle entries
        entries = []
        
        # Patient resource
        patient_resource = {
            "resource": {
                "resourceType": "Patient",
                "id": "local-patient",
                "name": [{"given": [given_name], "family": family_name}]
            }
        }
        
        # Add birth date if available
        if entities.get("date_of_birth") != "Undefined":
            patient_resource["resource"]["birthDate"] = entities["date_of_birth"]
        
        entries.append(patient_resource)
        
        # Add conditions as Condition resources
        for i, condition in enumerate(entities.get("conditions", [])):
            if condition:
                entries.append({
                    "resource": {
                        "resourceType": "Condition",
                        "id": f"local-condition-{i}",
                        "subject": {"reference": "Patient/local-patient"},
                        "code": {
                            "text": condition
                        },
                        "clinicalStatus": {
                            "coding": [{
                                "system": "http://terminology.hl7.org/CodeSystem/condition-clinical",
                                "code": "active"
                            }]
                        }
                    }
                })
        
        # Add medications as MedicationStatement resources
        for i, medication in enumerate(entities.get("medications", [])):
            if medication:
                entries.append({
                    "resource": {
                        "resourceType": "MedicationStatement",
                        "id": f"local-medication-{i}",
                        "subject": {"reference": "Patient/local-patient"},
                        "medicationCodeableConcept": {
                            "text": medication
                        },
                        "status": "active"
                    }
                })
        
        # Add vitals as Observation resources
        for i, vital in enumerate(entities.get("vitals", [])):
            if vital:
                entries.append({
                    "resource": {
                        "resourceType": "Observation",
                        "id": f"local-vital-{i}",
                        "subject": {"reference": "Patient/local-patient"},
                        "status": "final",
                        "code": {
                            "text": "Vital Sign"
                        },
                        "valueString": vital
                    }
                })
        
        return {
            "resourceType": "Bundle",
            "id": bundle_id,
            "type": "document",
            "timestamp": datetime.now().isoformat(),
            "entry": entries,
            "_metadata": {
                "processing_mode": self._get_processing_mode(),
                "entities_found": len(entities.get("conditions", [])) + len(entities.get("medications", [])) + len(entities.get("vitals", [])),
                "processed_by": user_id,
                "patient_name": entities.get("patient_name", "Undefined"),
                "provider_name": entities.get("provider_name", "Undefined")
            }
        }
    
    def _get_processing_mode(self) -> str:
        """Determine current processing mode"""
        if self.use_mistral_fallback and self.mistral_api_key:
            return "local_processing_with_mistral_ocr"
        elif self.use_multimodal_fallback:
            return "local_processing_with_multimodal_fallback"
        else:
            return "local_processing_only"

# Global instance
local_processor = LocalProcessor()