File size: 13,286 Bytes
a963d65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
#!/usr/bin/env python3
"""
Shared Medical Extraction Utilities
Centralized medical entity extraction logic to ensure consistency across all processors
"""
import re
from typing import Dict, Any, List
import json
class MedicalExtractor:
"""Centralized medical entity extraction with consistent patterns"""
def __init__(self):
# Comprehensive medical conditions database
self.conditions_patterns = [
"hypertension", "diabetes", "diabetes mellitus", "type 2 diabetes", "type 1 diabetes",
"pneumonia", "asthma", "copd", "chronic obstructive pulmonary disease",
"depression", "anxiety", "arthritis", "rheumatoid arthritis", "osteoarthritis",
"cancer", "stroke", "heart disease", "coronary artery disease", "myocardial infarction",
"kidney disease", "chronic kidney disease", "liver disease", "hepatitis",
"chest pain", "acute coronary syndrome", "angina", "atrial fibrillation",
"congestive heart failure", "heart failure", "cardiomyopathy",
"hyperlipidemia", "high cholesterol", "obesity", "metabolic syndrome"
]
# Common medication patterns
self.medication_patterns = [
r"([a-zA-Z]+(?:pril|sartan|olol|pine|statin|formin|cillin))\s+(\d+(?:\.\d+)?)\s*(mg|g|ml|units?)\s+(daily|twice daily|bid|tid|qid|once daily)",
r"(aspirin|lisinopril|atorvastatin|metformin|insulin|warfarin|prednisone|omeprazole)\s+(\d+(?:\.\d+)?)\s*(mg|g|ml|units?)",
r"([a-zA-Z]+)\s+(\d+(?:\.\d+)?)\s*(mg|g|ml|units?)\s+(daily|twice daily|bid|tid|qid)"
]
# Vital signs patterns
self.vital_patterns = [
(r"bp:?\s*(\d{2,3}/\d{2,3})", "Blood Pressure"),
(r"blood pressure:?\s*(\d{2,3}/\d{2,3})", "Blood Pressure"),
(r"hr:?\s*(\d{2,3})", "Heart Rate"),
(r"heart rate:?\s*(\d{2,3})", "Heart Rate"),
(r"temp:?\s*(\d{2,3}(?:\.\d)?)", "Temperature"),
(r"temperature:?\s*(\d{2,3}(?:\.\d)?)", "Temperature"),
(r"o2 sat:?\s*(\d{2,3}%)", "O2 Saturation"),
(r"oxygen saturation:?\s*(\d{2,3}%)", "O2 Saturation")
]
# Procedures keywords
self.procedures_keywords = [
"ecg", "ekg", "electrocardiogram", "x-ray", "ct scan", "mri", "ultrasound",
"blood test", "lab work", "biopsy", "endoscopy", "colonoscopy",
"surgery", "operation", "procedure", "catheterization", "angiography"
]
def extract_all_entities(self, text: str, processing_mode: str = "standard") -> Dict[str, Any]:
"""
Extract all medical entities from text using consistent patterns
Args:
text: Medical text to analyze
processing_mode: Processing mode for confidence scoring
Returns:
Dictionary with all extracted entities
"""
return {
"patient_info": self.extract_patient_info(text),
"date_of_birth": self.extract_date_of_birth(text),
"conditions": self.extract_conditions(text),
"medications": self.extract_medications(text),
"vitals": self.extract_vitals(text),
"procedures": self.extract_procedures(text),
"confidence_score": self.calculate_confidence_score(text, processing_mode),
"extraction_quality": self.assess_extraction_quality(text),
"processing_mode": processing_mode
}
def extract_patient_info(self, text: str) -> str:
"""Extract patient information with consistent patterns"""
text_lower = text.lower()
# Enhanced patient name patterns
patterns = [
r"patient:\s*([^\n\r,]+)",
r"name:\s*([^\n\r,]+)",
r"pt\.?\s*([^\n\r,]+)",
r"mr\.?\s*([^\n\r,]+)",
r"patient name:\s*([^\n\r,]+)"
]
for pattern in patterns:
match = re.search(pattern, text_lower)
if match:
name = match.group(1).strip().title()
# Validate name quality
if (len(name) > 2 and
not any(word in name.lower() for word in ['unknown', 'patient', 'test', 'sample']) and
re.match(r'^[a-zA-Z\s]+$', name)):
return name
return "Unknown Patient"
def extract_date_of_birth(self, text: str) -> str:
"""Extract date of birth with multiple formats"""
text_lower = text.lower()
# DOB patterns
dob_patterns = [
r"dob:?\s*([^\n\r]+)",
r"date of birth:?\s*([^\n\r]+)",
r"born:?\s*([^\n\r]+)",
r"birth date:?\s*([^\n\r]+)"
]
for pattern in dob_patterns:
match = re.search(pattern, text_lower)
if match:
dob = match.group(1).strip()
# Basic date validation
if re.match(r'\d{1,2}[/-]\d{1,2}[/-]\d{4}|\d{4}[/-]\d{1,2}[/-]\d{1,2}|[a-zA-Z]+ \d{1,2}, \d{4}', dob):
return dob
return "Not specified"
def extract_conditions(self, text: str) -> List[str]:
"""Extract medical conditions with context"""
text_lower = text.lower()
found_conditions = []
for condition in self.conditions_patterns:
if condition in text_lower:
# Get context around the condition
condition_pattern = rf"([^\n\r]*{re.escape(condition)}[^\n\r]*)"
context_match = re.search(condition_pattern, text_lower)
if context_match:
context = context_match.group(1).strip().title()
if context not in found_conditions and len(context) > len(condition):
found_conditions.append(context)
elif condition.title() not in found_conditions:
found_conditions.append(condition.title())
return found_conditions[:5] # Limit to top 5 for clarity
def extract_medications(self, text: str) -> List[str]:
"""Extract medications with dosages using consistent patterns"""
medications = []
for pattern in self.medication_patterns:
matches = re.finditer(pattern, text, re.IGNORECASE)
for match in matches:
if len(match.groups()) >= 3:
med_name = match.group(1).title()
dose = match.group(2)
unit = match.group(3).lower()
frequency = match.group(4) if len(match.groups()) >= 4 else ""
full_med = f"{med_name} {dose}{unit} {frequency}".strip()
if full_med not in medications:
medications.append(full_med)
return medications[:5] # Limit to top 5
def extract_vitals(self, text: str) -> List[str]:
"""Extract vital signs with consistent formatting"""
vitals = []
for pattern, vital_type in self.vital_patterns:
matches = re.finditer(pattern, text, re.IGNORECASE)
for match in matches:
vital_value = match.group(1)
if vital_type == "Blood Pressure":
vitals.append(f"Blood Pressure: {vital_value}")
elif vital_type == "Heart Rate":
vitals.append(f"Heart Rate: {vital_value} bpm")
elif vital_type == "Temperature":
vitals.append(f"Temperature: {vital_value}°F")
elif vital_type == "O2 Saturation":
vitals.append(f"O2 Saturation: {vital_value}")
return vitals[:4] # Limit to top 4
def extract_procedures(self, text: str) -> List[str]:
"""Extract procedures with consistent naming"""
procedures = []
text_lower = text.lower()
for procedure in self.procedures_keywords:
if procedure in text_lower:
procedures.append(procedure.title())
return procedures[:3] # Limit to top 3
def calculate_confidence_score(self, text: str, processing_mode: str) -> float:
"""Calculate confidence score based on text quality and processing mode"""
base_confidence = {
"rule_based": 0.75,
"ollama": 0.85,
"modal": 0.94,
"huggingface": 0.88,
"standard": 0.80
}
confidence = base_confidence.get(processing_mode, 0.80)
# Adjust based on text quality
if len(text) > 500:
confidence += 0.05
if len(text) > 1000:
confidence += 0.05
# Check for medical keywords
medical_keywords = ["patient", "diagnosis", "medication", "treatment", "clinical"]
keyword_count = sum(1 for keyword in medical_keywords if keyword.lower() in text.lower())
confidence += keyword_count * 0.02
return min(0.98, confidence)
def assess_extraction_quality(self, text: str) -> Dict[str, Any]:
"""Assess the quality of extraction based on text content"""
# Extract basic entities for quality assessment
patient = self.extract_patient_info(text)
dob = self.extract_date_of_birth(text)
conditions = self.extract_conditions(text)
medications = self.extract_medications(text)
vitals = self.extract_vitals(text)
procedures = self.extract_procedures(text)
return {
"patient_identified": patient != "Unknown Patient",
"dob_found": dob != "Not specified",
"conditions_count": len(conditions),
"medications_count": len(medications),
"vitals_count": len(vitals),
"procedures_count": len(procedures),
"total_entities": len(conditions) + len(medications) + len(vitals) + len(procedures),
"detailed_medications": sum(1 for med in medications if any(unit in med.lower() for unit in ['mg', 'g', 'ml'])),
"has_vital_signs": len(vitals) > 0,
"comprehensive_analysis": len(conditions) > 0 and len(medications) > 0
}
def count_entities(self, extracted_data: Dict[str, Any]) -> int:
"""Count total entities consistently across the system"""
return (len(extracted_data.get("conditions", [])) +
len(extracted_data.get("medications", [])) +
len(extracted_data.get("vitals", [])) +
len(extracted_data.get("procedures", [])))
def format_for_pydantic(self, extracted_data: Dict[str, Any]) -> Dict[str, Any]:
"""Format extracted data for Pydantic model compatibility"""
return {
"patient": extracted_data.get("patient_info", "Unknown Patient"),
"date_of_birth": extracted_data.get("date_of_birth", "Not specified"),
"conditions": extracted_data.get("conditions", []),
"medications": extracted_data.get("medications", []),
"vitals": extracted_data.get("vitals", []),
"procedures": extracted_data.get("procedures", []),
"confidence_score": extracted_data.get("confidence_score", 0.80),
"extraction_quality": extracted_data.get("extraction_quality", {}),
"_processing_metadata": {
"mode": extracted_data.get("processing_mode", "standard"),
"total_entities": self.count_entities(extracted_data),
"extraction_timestamp": "2025-06-06T12:00:00Z"
}
}
# Global instance for consistent usage across the system
medical_extractor = MedicalExtractor()
# Convenience functions for backward compatibility
def extract_medical_entities(text: str, processing_mode: str = "standard") -> Dict[str, Any]:
"""Extract medical entities using the shared extractor"""
return medical_extractor.extract_all_entities(text, processing_mode)
def count_entities(extracted_data: Dict[str, Any]) -> int:
"""Count entities using the shared method"""
return medical_extractor.count_entities(extracted_data)
def format_for_pydantic(extracted_data: Dict[str, Any]) -> Dict[str, Any]:
"""Format for Pydantic using the shared method"""
return medical_extractor.format_for_pydantic(extracted_data)
def calculate_quality_score(extracted_data: Dict[str, Any]) -> float:
"""Calculate quality score based on entity richness"""
entity_count = count_entities(extracted_data)
patient_found = bool(extracted_data.get("patient_info") and
extracted_data.get("patient_info") != "Unknown Patient")
base_score = 0.7
entity_bonus = min(0.25, entity_count * 0.04) # Up to 0.25 bonus for entities
patient_bonus = 0.05 if patient_found else 0
return min(0.98, base_score + entity_bonus + patient_bonus)
# Export main components
__all__ = [
"MedicalExtractor",
"medical_extractor",
"extract_medical_entities",
"count_entities",
"format_for_pydantic",
"calculate_quality_score"
] |