File size: 30,616 Bytes
a963d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
"""
FhirFlame Unified Monitoring and Observability
Comprehensive Langfuse integration for medical AI workflows with centralized monitoring
"""

import time
import json
from typing import Dict, Any, Optional, List, Union
from functools import wraps
from contextlib import contextmanager

# Langfuse monitoring with environment configuration
try:
    import os
    import sys
    from dotenv import load_dotenv
    load_dotenv()  # Load environment variables
    
    # Comprehensive test environment detection
    is_testing = (
        os.getenv("DISABLE_LANGFUSE") == "true" or
        os.getenv("PYTEST_RUNNING") == "true" or
        os.getenv("PYTEST_CURRENT_TEST") is not None or
        "pytest" in str(sys.argv) or
        "pytest" in os.getenv("_", "") or
        "test" in os.path.basename(os.getenv("_", "")) or
        any("pytest" in arg for arg in sys.argv) or
        any("test" in arg for arg in sys.argv)
    )
    
    if is_testing:
        print("🧪 Test environment detected - disabling Langfuse")
        langfuse = None
        LANGFUSE_AVAILABLE = False
    else:
        try:
            from langfuse import Langfuse
            
            # Check if Langfuse is properly configured
            secret_key = os.getenv("LANGFUSE_SECRET_KEY")
            public_key = os.getenv("LANGFUSE_PUBLIC_KEY")
            host = os.getenv("LANGFUSE_HOST", "https://cloud.langfuse.com")
            
            if not secret_key or not public_key:
                print("⚠️ Langfuse keys not configured - using local monitoring only")
                langfuse = None
                LANGFUSE_AVAILABLE = False
            else:
                # Initialize with environment variables and timeout settings
                try:
                    langfuse = Langfuse(
                        secret_key=secret_key,
                        public_key=public_key,
                        host=host,
                        timeout=2  # Very short timeout for faster failure detection
                    )
                    
                    # Test connection with a simple call
                    try:
                        # Quick health check - if this fails, disable Langfuse
                        # Use the newer Langfuse API for health check
                        if hasattr(langfuse, 'trace'):
                            test_trace = langfuse.trace(name="connection_test")
                            if test_trace:
                                test_trace.update(output={"status": "connection_ok"})
                        else:
                            # Fallback: just test if the client exists
                            _ = str(langfuse)
                        LANGFUSE_AVAILABLE = True
                        print(f"🔍 Langfuse initialized: {host}")
                    except Exception as connection_error:
                        print(f"⚠️ Langfuse connection test failed: {connection_error}")
                        print("🔄 Continuing with local-only monitoring...")
                        langfuse = None
                        LANGFUSE_AVAILABLE = False
                        
                except Exception as init_error:
                    print(f"⚠️ Langfuse client initialization failed: {init_error}")
                    print("🔄 Continuing with local-only monitoring...")
                    langfuse = None
                    LANGFUSE_AVAILABLE = False
        except Exception as langfuse_error:
            print(f"⚠️ Langfuse initialization failed: {langfuse_error}")
            langfuse = None
            LANGFUSE_AVAILABLE = False
        
except ImportError:
    langfuse = None
    LANGFUSE_AVAILABLE = False
    print("⚠️ Langfuse package not available - using local monitoring only")
except Exception as e:
    langfuse = None
    LANGFUSE_AVAILABLE = False
    print(f"⚠️ Langfuse initialization failed: {e}")
    print(f"🔄 Continuing with local-only monitoring...")

# LangChain monitoring
try:
    from langchain.text_splitter import RecursiveCharacterTextSplitter
    LANGCHAIN_AVAILABLE = True
except ImportError:
    LANGCHAIN_AVAILABLE = False

class FhirFlameMonitor:
    """Comprehensive monitoring for FhirFlame medical AI workflows"""
    
    def __init__(self):
        self.langfuse = langfuse if LANGFUSE_AVAILABLE else None
        self.session_id = f"fhirflame_{int(time.time())}" if self.langfuse else None
        
    def track_operation(self, operation_name: str):
        """Universal decorator to track any operation"""
        def decorator(func):
            @wraps(func)
            async def wrapper(*args, **kwargs):
                start_time = time.time()
                trace = None
                
                if self.langfuse:
                    try:
                        # Use newer Langfuse API if available
                        if hasattr(self.langfuse, 'trace'):
                            trace = self.langfuse.trace(
                                name=operation_name,
                                session_id=self.session_id
                            )
                        else:
                            trace = None
                    except Exception:
                        trace = None
                
                try:
                    result = await func(*args, **kwargs)
                    processing_time = time.time() - start_time
                    
                    if trace:
                        trace.update(
                            output={"status": "success", "processing_time": processing_time},
                            metadata={"operation": operation_name}
                        )
                    
                    return result
                    
                except Exception as e:
                    if trace:
                        trace.update(
                            output={"status": "error", "error": str(e)},
                            metadata={"processing_time": time.time() - start_time}
                        )
                    raise
                    
            return wrapper
        return decorator
    
    def log_event(self, event_name: str, properties: Dict[str, Any]):
        """Log any event with properties"""

        # LOCAL DEBUG: write log to local file
        try:
            import os
            os.makedirs('/app/logs', exist_ok=True)
            with open('/app/logs/debug_events.log', 'a') as f:
                f.write(f"{time.time()} {event_name} {json.dumps(properties)}\n")
        except Exception:
            pass
        if self.langfuse:
            try:
                # Use newer Langfuse API if available
                if hasattr(self.langfuse, 'event'):
                    self.langfuse.event(
                        name=event_name,
                        properties=properties,
                        session_id=self.session_id
                    )
                elif hasattr(self.langfuse, 'log'):
                    # Fallback to older API
                    self.langfuse.log(
                        level="INFO",
                        message=event_name,
                        extra=properties
                    )
            except Exception:
                # Silently fail for logging to avoid disrupting workflow
                # Disable Langfuse for this session if it keeps failing
                self.langfuse = None
    
    # === AI MODEL PROCESSING MONITORING ===
    
    def log_ollama_api_call(self, model: str, url: str, prompt_length: int, success: bool = True, response_time: float = 0.0, status_code: int = 200, error: str = None):
        """Log Ollama API call details"""
        self.log_event("ollama_api_call", {
            "model": model,
            "url": url,
            "prompt_length": prompt_length,
            "success": success,
            "response_time": response_time,
            "status_code": status_code,
            "error": error,
            "api_type": "ollama_generate"
        })
    
    def log_ai_generation(self, model: str, response_length: int, processing_time: float, entities_found: int, confidence: float, processing_mode: str):
        """Log AI text generation results"""
        self.log_event("ai_generation_complete", {
            "model": model,
            "response_length": response_length,
            "processing_time": processing_time,
            "entities_found": entities_found,
            "confidence_score": confidence,
            "processing_mode": processing_mode,
            "generation_type": "medical_entity_extraction"
        })
    
    def log_ai_parsing(self, success: bool, response_format: str, entities_extracted: int, parsing_time: float, error: str = None):
        """Log AI response parsing results"""
        self.log_event("ai_response_parsing", {
            "parsing_success": success,
            "response_format": response_format,
            "entities_extracted": entities_extracted,
            "parsing_time": parsing_time,
            "error": error,
            "parser_type": "json_medical_extractor"
        })
    
    def log_data_transformation(self, input_format: str, output_format: str, entities_transformed: int, transformation_time: float, complex_nested: bool = False):
        """Log data transformation operations"""
        self.log_event("data_transformation", {
            "input_format": input_format,
            "output_format": output_format,
            "entities_transformed": entities_transformed,
            "transformation_time": transformation_time,
            "complex_nested_input": complex_nested,
            "transformer_type": "ai_to_pydantic"
        })
    
    # === MEDICAL PROCESSING MONITORING ===
    
    def log_medical_processing(self, entities_found: int, confidence: float, processing_time: float, processing_mode: str = "unknown", model_used: str = "codellama:13b-instruct"):
        """Log medical processing results"""
        self.log_event("medical_processing_complete", {
            "entities_found": entities_found,
            "confidence_score": confidence,
            "processing_time": processing_time,
            "processing_mode": processing_mode,
            "model_used": model_used,
            "extraction_type": "clinical_entities"
        })
    
    def log_medical_entity_extraction(self, conditions: int, medications: int, vitals: int, procedures: int, patient_info_found: bool, confidence: float):
        """Log detailed medical entity extraction"""
        self.log_event("medical_entity_extraction", {
            "conditions_found": conditions,
            "medications_found": medications,
            "vitals_found": vitals,
            "procedures_found": procedures,
            "patient_info_extracted": patient_info_found,
            "total_entities": conditions + medications + vitals + procedures,
            "confidence_score": confidence,
            "extraction_category": "clinical_data"
        })
    
    def log_rule_based_processing(self, entities_found: int, conditions: int, medications: int, vitals: int, confidence: float, processing_time: float):
        """Log rule-based processing fallback"""
        self.log_event("rule_based_processing_complete", {
            "total_entities": entities_found,
            "conditions_found": conditions,
            "medications_found": medications,
            "vitals_found": vitals,
            "confidence_score": confidence,
            "processing_time": processing_time,
            "processing_mode": "rule_based_fallback",
            "fallback_triggered": True
        })
    
    # === FHIR VALIDATION MONITORING ===
    
    def log_fhir_validation(self, is_valid: bool, compliance_score: float, validation_level: str, fhir_version: str = "R4", resource_types: List[str] = None):
        """Log FHIR validation results"""
        self.log_event("fhir_validation_complete", {
            "is_valid": is_valid,
            "compliance_score": compliance_score,
            "validation_level": validation_level,
            "fhir_version": fhir_version,
            "resource_types": resource_types or [],
            "validation_type": "bundle_validation"
        })
    
    def log_fhir_structure_validation(self, structure_valid: bool, resource_types: List[str], validation_time: float, errors: List[str] = None):
        """Log FHIR structure validation"""
        self.log_event("fhir_structure_validation", {
            "structure_valid": structure_valid,
            "resource_types_detected": resource_types,
            "validation_time": validation_time,
            "error_count": len(errors) if errors else 0,
            "validation_errors": errors or [],
            "validator_type": "pydantic_fhir"
        })
    
    def log_fhir_terminology_validation(self, terminology_valid: bool, codes_validated: int, loinc_found: bool, snomed_found: bool, validation_time: float):
        """Log FHIR terminology validation"""
        self.log_event("fhir_terminology_validation", {
            "terminology_valid": terminology_valid,
            "codes_validated": codes_validated,
            "loinc_codes_found": loinc_found,
            "snomed_codes_found": snomed_found,
            "validation_time": validation_time,
            "coding_systems": ["LOINC" if loinc_found else "", "SNOMED" if snomed_found else ""],
            "validator_type": "medical_terminology"
        })
    
    def log_hipaa_compliance_check(self, is_compliant: bool, phi_protected: bool, security_met: bool, validation_time: float, errors: List[str] = None):
        """Log HIPAA compliance validation"""
        self.log_event("hipaa_compliance_check", {
            "hipaa_compliant": is_compliant,
            "phi_properly_protected": phi_protected,
            "security_requirements_met": security_met,
            "validation_time": validation_time,
            "compliance_errors": errors or [],
            "compliance_level": "healthcare_grade",
            "validator_type": "hipaa_checker"
        })
    
    def log_fhir_bundle_generation(self, patient_resources: int, condition_resources: int, observation_resources: int, generation_time: float, success: bool):
        """Log FHIR bundle generation"""
        self.log_event("fhir_bundle_generation", {
            "patient_resources": patient_resources,
            "condition_resources": condition_resources,
            "observation_resources": observation_resources,
            "total_resources": patient_resources + condition_resources + observation_resources,
            "generation_time": generation_time,
            "generation_success": success,
            "bundle_type": "document",
            "generator_type": "pydantic_fhir"
        })
    
    # === WORKFLOW MONITORING ===
    
    def log_document_processing_start(self, document_type: str, text_length: int, extract_entities: bool, generate_fhir: bool):
        """Log start of document processing"""
        self.log_event("document_processing_start", {
            "document_type": document_type,
            "text_length": text_length,
            "extract_entities": extract_entities,
            "generate_fhir": generate_fhir,
            "workflow_stage": "initialization"
        })
    
    def log_document_processing_complete(self, success: bool, processing_time: float, entities_found: int, fhir_generated: bool, quality_score: float):
        """Log completion of document processing"""
        self.log_event("document_processing_complete", {
            "processing_success": success,
            "total_processing_time": processing_time,
            "entities_extracted": entities_found,
            "fhir_bundle_generated": fhir_generated,
            "quality_score": quality_score,
            "workflow_stage": "completion"
        })
    
    def log_workflow_summary(self, documents_processed: int, successful_documents: int, total_time: float, average_time: float, monitoring_active: bool):
        """Log overall workflow summary"""
        self.log_event("workflow_summary", {
            "documents_processed": documents_processed,
            "successful_documents": successful_documents,
            "failed_documents": documents_processed - successful_documents,
            "success_rate": successful_documents / documents_processed if documents_processed > 0 else 0,
            "total_processing_time": total_time,
            "average_time_per_document": average_time,
            "monitoring_active": monitoring_active,
            "workflow_type": "real_medical_processing"
        })
    
    def log_mcp_tool(self, tool_name: str, success: bool, processing_time: float, input_size: int = 0, entities_found: int = 0):
        """Log MCP tool execution"""
        self.log_event("mcp_tool_execution", {
            "tool_name": tool_name,
            "success": success,
            "processing_time": processing_time,
            "input_size": input_size,
            "entities_found": entities_found,
            "mcp_protocol_version": "2024-11-05"
        })
        
    def log_mcp_server_start(self, server_name: str, tools_count: int, port: int):
        """Log MCP server startup"""
        self.log_event("mcp_server_startup", {
            "server_name": server_name,
            "tools_available": tools_count,
            "port": port,
            "protocol": "mcp_2024"
        })
        
    def log_mcp_authentication(self, auth_method: str, success: bool, user_id: str = None):
        """Log MCP authentication events"""
        self.log_event("mcp_authentication", {
            "auth_method": auth_method,
            "success": success,
            "user_id": user_id or "anonymous",
            "security_level": "a2a_api"
        })
    
    # === MISTRAL OCR MONITORING ===
    
    def log_mistral_ocr_processing(self, document_size: int, extraction_time: float, success: bool, text_length: int = 0, error: str = None):
        """Log Mistral OCR API processing"""
        self.log_event("mistral_ocr_processing", {
            "document_size_bytes": document_size,
            "extraction_time": extraction_time,
            "success": success,
            "extracted_text_length": text_length,
            "error": error,
            "ocr_provider": "mistral_api"
        })
    
    def log_ocr_workflow_integration(self, ocr_method: str, agent_processing_time: float, total_workflow_time: float, entities_found: int):
        """Log complete OCR → Agent workflow integration"""
        self.log_event("ocr_workflow_integration", {
            "ocr_method": ocr_method,
            "agent_processing_time": agent_processing_time,
            "total_workflow_time": total_workflow_time,
            "entities_extracted": entities_found,
            "workflow_type": "ocr_to_agent_pipeline"
        })
    
    # === A2A API MONITORING ===
    
    def log_a2a_api_request(self, endpoint: str, method: str, auth_method: str, request_size: int, user_id: str = None):
        """Log A2A API request"""
        self.log_event("a2a_api_request", {
            "endpoint": endpoint,
            "method": method,
            "auth_method": auth_method,
            "request_size_bytes": request_size,
            "user_id": user_id or "anonymous",
            "api_version": "v1.0"
        })
    
    def log_a2a_api_response(self, endpoint: str, status_code: int, response_time: float, success: bool, entities_processed: int = 0):
        """Log A2A API response"""
        self.log_event("a2a_api_response", {
            "endpoint": endpoint,
            "status_code": status_code,
            "response_time": response_time,
            "success": success,
            "entities_processed": entities_processed,
            "api_type": "rest_a2a"
        })
    
    def log_a2a_authentication(self, auth_provider: str, success: bool, auth_time: float, user_claims: Dict[str, Any] = None):
        """Log A2A authentication events"""
        self.log_event("a2a_authentication", {
            "auth_provider": auth_provider,
            "success": success,
            "auth_time": auth_time,
            "user_claims": user_claims or {},
            "security_level": "production" if auth_provider == "auth0" else "development"
        })
    
    # === MODAL SCALING MONITORING ===
    
    def log_modal_function_call(self, function_name: str, gpu_type: str, processing_time: float, cost_estimate: float, container_id: str):
        """Log Modal function execution"""
        self.log_event("modal_function_call", {
            "function_name": function_name,
            "gpu_type": gpu_type,
            "processing_time": processing_time,
            "cost_estimate": cost_estimate,
            "container_id": container_id,
            "cloud_provider": "modal_labs"
        })
    
    def log_modal_scaling_event(self, event_type: str, container_count: int, gpu_utilization: str, auto_scaling: bool):
        """Log Modal auto-scaling events"""
        self.log_event("modal_scaling_event", {
            "event_type": event_type,  # scale_up, scale_down, container_start, container_stop
            "container_count": container_count,
            "gpu_utilization": gpu_utilization,
            "auto_scaling_active": auto_scaling,
            "scaling_provider": "modal_l4"
        })
    
    def log_modal_deployment(self, app_name: str, functions_deployed: int, success: bool, deployment_time: float):
        """Log Modal deployment events"""
        self.log_event("modal_deployment", {
            "app_name": app_name,
            "functions_deployed": functions_deployed,
            "deployment_success": success,
            "deployment_time": deployment_time,
            "deployment_target": "modal_serverless"
        })
    
    def log_modal_cost_tracking(self, daily_cost: float, requests_processed: int, cost_per_request: float, gpu_hours: float):
        """Log Modal cost analytics"""
        self.log_event("modal_cost_tracking", {
            "daily_cost": daily_cost,
            "requests_processed": requests_processed,
            "cost_per_request": cost_per_request,
            "gpu_hours_used": gpu_hours,
            "cost_optimization": "l4_gpu_auto_scaling"
        })
    
    # === DOCKER DEPLOYMENT MONITORING ===
    
    def log_docker_deployment(self, compose_file: str, services_started: int, success: bool, startup_time: float):
        """Log Docker Compose deployment"""
        self.log_event("docker_deployment", {
            "compose_file": compose_file,
            "services_started": services_started,
            "deployment_success": success,
            "startup_time": startup_time,
            "deployment_type": "docker_compose"
        })
    
    def log_docker_service_health(self, service_name: str, status: str, response_time: float, healthy: bool):
        """Log Docker service health checks"""
        self.log_event("docker_service_health", {
            "service_name": service_name,
            "status": status,
            "response_time": response_time,
            "healthy": healthy,
            "monitoring_type": "health_check"
        })
    
    # === ERROR AND PERFORMANCE MONITORING ===
    
    def log_error_event(self, error_type: str, error_message: str, stack_trace: str, component: str, severity: str = "error"):
        """Log error events with context"""
        self.log_event("error_event", {
            "error_type": error_type,
            "error_message": error_message,
            "stack_trace": stack_trace,
            "component": component,
            "severity": severity,
            "timestamp": time.time()
        })
    
    def log_performance_metrics(self, component: str, cpu_usage: float, memory_usage: float, response_time: float, throughput: float):
        """Log performance metrics"""
        self.log_event("performance_metrics", {
            "component": component,
            "cpu_usage_percent": cpu_usage,
            "memory_usage_mb": memory_usage,
            "response_time": response_time,
            "throughput_requests_per_second": throughput,
            "metrics_type": "system_performance"
        })
    
    # === LANGFUSE TRACE UTILITIES ===
    
    def create_langfuse_trace(self, name: str, input_data: Dict[str, Any] = None, session_id: str = None) -> Any:
        """Create a Langfuse trace if available"""
        if self.langfuse:
            try:
                return self.langfuse.trace(
                    name=name,
                    input=input_data or {},
                    session_id=session_id or self.session_id
                )
            except Exception:
                return None
        return None
    
    def update_langfuse_trace(self, trace: Any, output: Dict[str, Any] = None, metadata: Dict[str, Any] = None):
        """Update a Langfuse trace if available"""
        if trace and self.langfuse:
            try:
                trace.update(
                    output=output or {},
                    metadata=metadata or {}
                )
            except Exception:
                pass
    
    def get_monitoring_status(self) -> Dict[str, Any]:
        """Get comprehensive monitoring status"""
        return {
            "langfuse_enabled": self.langfuse is not None,
            "session_id": self.session_id,
            "langfuse_host": os.getenv("LANGFUSE_HOST", "https://cloud.langfuse.com") if self.langfuse else None,
            "monitoring_active": True,
            "events_logged": True,
            "trace_collection": "enabled" if self.langfuse else "disabled"
        }
    
    @contextmanager
    def trace_operation(self, operation_name: str, input_data: Dict[str, Any] = None):
        """Context manager for tracing operations"""
        trace = None
        if self.langfuse:
            try:
                trace = self.langfuse.trace(
                    name=operation_name,
                    input=input_data or {},
                    session_id=self.session_id
                )
            except Exception:
                # Silently fail trace creation to avoid disrupting workflow
                trace = None
        
        start_time = time.time()
        try:
            yield trace
        except Exception as e:
            if trace:
                try:
                    trace.update(
                        output={"error": str(e), "status": "failed"},
                        metadata={"processing_time": time.time() - start_time}
                    )
                except Exception:
                    # Silently fail trace update
                    pass
            raise
        else:
            if trace:
                try:
                    trace.update(
                        metadata={"processing_time": time.time() - start_time, "status": "completed"}
                    )
                except Exception:
                    # Silently fail trace update
                    pass
    
    @contextmanager
    def trace_ai_processing(self, model: str, text_length: int, temperature: float, max_tokens: int):
        """Context manager specifically for AI processing operations"""
        with self.trace_operation("ai_model_processing", {
            "model": model,
            "input_length": text_length,
            "temperature": temperature,
            "max_tokens": max_tokens,
            "processing_type": "medical_extraction"
        }) as trace:
            yield trace
    
    @contextmanager
    def trace_fhir_validation(self, validation_level: str, resource_count: int):
        """Context manager specifically for FHIR validation operations"""
        with self.trace_operation("fhir_validation_process", {
            "validation_level": validation_level,
            "resource_count": resource_count,
            "fhir_version": "R4",
            "validation_type": "comprehensive"
        }) as trace:
            yield trace
    
    @contextmanager
    def trace_document_workflow(self, document_type: str, text_length: int):
        """Context manager for complete document processing workflow"""
        with self.trace_operation("document_processing_workflow", {
            "document_type": document_type,
            "text_length": text_length,
            "workflow_type": "end_to_end_medical"
        }) as trace:
            yield trace
    
    def get_langchain_callback(self):
        """Get LangChain callback handler for monitoring"""
        if LANGCHAIN_AVAILABLE and self.langfuse:
            try:
                return self.langfuse.get_langchain_callback(session_id=self.session_id)
            except Exception:
                return None
        return None
    
    def process_with_langchain(self, text: str, operation: str = "document_processing"):
        """Process text using LangChain with monitoring"""
        if not LANGCHAIN_AVAILABLE:
            return {"processed_text": text, "chunks": [text]}
        
        try:
            splitter = RecursiveCharacterTextSplitter(
                chunk_size=1000,
                chunk_overlap=100,
                separators=["\n\n", "\n", ".", " "]
            )
            
            chunks = splitter.split_text(text)
            
            self.log_event("langchain_processing", {
                "operation": operation,
                "chunk_count": len(chunks),
                "total_length": len(text)
            })
            
            return {"processed_text": text, "chunks": chunks}
            
        except Exception as e:
            self.log_event("langchain_error", {"error": str(e), "operation": operation})
            return {"processed_text": text, "chunks": [text], "error": str(e)}

# Global monitor instance
monitor = FhirFlameMonitor()

# Convenience decorators
def track_medical_processing(operation: str):
    """Convenience decorator for medical processing tracking"""
    return monitor.track_operation(f"medical_{operation}")

def track_performance(func):
    """Decorator to track function performance"""
    @wraps(func)
    async def wrapper(*args, **kwargs):
        start_time = time.time()
        result = await func(*args, **kwargs)
        processing_time = time.time() - start_time
        
        monitor.log_event("performance", {
            "function": func.__name__,
            "processing_time": processing_time
        })
        
        return result
    return wrapper

# Make available for import
__all__ = ["FhirFlameMonitor", "monitor", "track_medical_processing", "track_performance"]