File size: 30,616 Bytes
a963d65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
"""
FhirFlame Unified Monitoring and Observability
Comprehensive Langfuse integration for medical AI workflows with centralized monitoring
"""
import time
import json
from typing import Dict, Any, Optional, List, Union
from functools import wraps
from contextlib import contextmanager
# Langfuse monitoring with environment configuration
try:
import os
import sys
from dotenv import load_dotenv
load_dotenv() # Load environment variables
# Comprehensive test environment detection
is_testing = (
os.getenv("DISABLE_LANGFUSE") == "true" or
os.getenv("PYTEST_RUNNING") == "true" or
os.getenv("PYTEST_CURRENT_TEST") is not None or
"pytest" in str(sys.argv) or
"pytest" in os.getenv("_", "") or
"test" in os.path.basename(os.getenv("_", "")) or
any("pytest" in arg for arg in sys.argv) or
any("test" in arg for arg in sys.argv)
)
if is_testing:
print("🧪 Test environment detected - disabling Langfuse")
langfuse = None
LANGFUSE_AVAILABLE = False
else:
try:
from langfuse import Langfuse
# Check if Langfuse is properly configured
secret_key = os.getenv("LANGFUSE_SECRET_KEY")
public_key = os.getenv("LANGFUSE_PUBLIC_KEY")
host = os.getenv("LANGFUSE_HOST", "https://cloud.langfuse.com")
if not secret_key or not public_key:
print("⚠️ Langfuse keys not configured - using local monitoring only")
langfuse = None
LANGFUSE_AVAILABLE = False
else:
# Initialize with environment variables and timeout settings
try:
langfuse = Langfuse(
secret_key=secret_key,
public_key=public_key,
host=host,
timeout=2 # Very short timeout for faster failure detection
)
# Test connection with a simple call
try:
# Quick health check - if this fails, disable Langfuse
# Use the newer Langfuse API for health check
if hasattr(langfuse, 'trace'):
test_trace = langfuse.trace(name="connection_test")
if test_trace:
test_trace.update(output={"status": "connection_ok"})
else:
# Fallback: just test if the client exists
_ = str(langfuse)
LANGFUSE_AVAILABLE = True
print(f"🔍 Langfuse initialized: {host}")
except Exception as connection_error:
print(f"⚠️ Langfuse connection test failed: {connection_error}")
print("🔄 Continuing with local-only monitoring...")
langfuse = None
LANGFUSE_AVAILABLE = False
except Exception as init_error:
print(f"⚠️ Langfuse client initialization failed: {init_error}")
print("🔄 Continuing with local-only monitoring...")
langfuse = None
LANGFUSE_AVAILABLE = False
except Exception as langfuse_error:
print(f"⚠️ Langfuse initialization failed: {langfuse_error}")
langfuse = None
LANGFUSE_AVAILABLE = False
except ImportError:
langfuse = None
LANGFUSE_AVAILABLE = False
print("⚠️ Langfuse package not available - using local monitoring only")
except Exception as e:
langfuse = None
LANGFUSE_AVAILABLE = False
print(f"⚠️ Langfuse initialization failed: {e}")
print(f"🔄 Continuing with local-only monitoring...")
# LangChain monitoring
try:
from langchain.text_splitter import RecursiveCharacterTextSplitter
LANGCHAIN_AVAILABLE = True
except ImportError:
LANGCHAIN_AVAILABLE = False
class FhirFlameMonitor:
"""Comprehensive monitoring for FhirFlame medical AI workflows"""
def __init__(self):
self.langfuse = langfuse if LANGFUSE_AVAILABLE else None
self.session_id = f"fhirflame_{int(time.time())}" if self.langfuse else None
def track_operation(self, operation_name: str):
"""Universal decorator to track any operation"""
def decorator(func):
@wraps(func)
async def wrapper(*args, **kwargs):
start_time = time.time()
trace = None
if self.langfuse:
try:
# Use newer Langfuse API if available
if hasattr(self.langfuse, 'trace'):
trace = self.langfuse.trace(
name=operation_name,
session_id=self.session_id
)
else:
trace = None
except Exception:
trace = None
try:
result = await func(*args, **kwargs)
processing_time = time.time() - start_time
if trace:
trace.update(
output={"status": "success", "processing_time": processing_time},
metadata={"operation": operation_name}
)
return result
except Exception as e:
if trace:
trace.update(
output={"status": "error", "error": str(e)},
metadata={"processing_time": time.time() - start_time}
)
raise
return wrapper
return decorator
def log_event(self, event_name: str, properties: Dict[str, Any]):
"""Log any event with properties"""
# LOCAL DEBUG: write log to local file
try:
import os
os.makedirs('/app/logs', exist_ok=True)
with open('/app/logs/debug_events.log', 'a') as f:
f.write(f"{time.time()} {event_name} {json.dumps(properties)}\n")
except Exception:
pass
if self.langfuse:
try:
# Use newer Langfuse API if available
if hasattr(self.langfuse, 'event'):
self.langfuse.event(
name=event_name,
properties=properties,
session_id=self.session_id
)
elif hasattr(self.langfuse, 'log'):
# Fallback to older API
self.langfuse.log(
level="INFO",
message=event_name,
extra=properties
)
except Exception:
# Silently fail for logging to avoid disrupting workflow
# Disable Langfuse for this session if it keeps failing
self.langfuse = None
# === AI MODEL PROCESSING MONITORING ===
def log_ollama_api_call(self, model: str, url: str, prompt_length: int, success: bool = True, response_time: float = 0.0, status_code: int = 200, error: str = None):
"""Log Ollama API call details"""
self.log_event("ollama_api_call", {
"model": model,
"url": url,
"prompt_length": prompt_length,
"success": success,
"response_time": response_time,
"status_code": status_code,
"error": error,
"api_type": "ollama_generate"
})
def log_ai_generation(self, model: str, response_length: int, processing_time: float, entities_found: int, confidence: float, processing_mode: str):
"""Log AI text generation results"""
self.log_event("ai_generation_complete", {
"model": model,
"response_length": response_length,
"processing_time": processing_time,
"entities_found": entities_found,
"confidence_score": confidence,
"processing_mode": processing_mode,
"generation_type": "medical_entity_extraction"
})
def log_ai_parsing(self, success: bool, response_format: str, entities_extracted: int, parsing_time: float, error: str = None):
"""Log AI response parsing results"""
self.log_event("ai_response_parsing", {
"parsing_success": success,
"response_format": response_format,
"entities_extracted": entities_extracted,
"parsing_time": parsing_time,
"error": error,
"parser_type": "json_medical_extractor"
})
def log_data_transformation(self, input_format: str, output_format: str, entities_transformed: int, transformation_time: float, complex_nested: bool = False):
"""Log data transformation operations"""
self.log_event("data_transformation", {
"input_format": input_format,
"output_format": output_format,
"entities_transformed": entities_transformed,
"transformation_time": transformation_time,
"complex_nested_input": complex_nested,
"transformer_type": "ai_to_pydantic"
})
# === MEDICAL PROCESSING MONITORING ===
def log_medical_processing(self, entities_found: int, confidence: float, processing_time: float, processing_mode: str = "unknown", model_used: str = "codellama:13b-instruct"):
"""Log medical processing results"""
self.log_event("medical_processing_complete", {
"entities_found": entities_found,
"confidence_score": confidence,
"processing_time": processing_time,
"processing_mode": processing_mode,
"model_used": model_used,
"extraction_type": "clinical_entities"
})
def log_medical_entity_extraction(self, conditions: int, medications: int, vitals: int, procedures: int, patient_info_found: bool, confidence: float):
"""Log detailed medical entity extraction"""
self.log_event("medical_entity_extraction", {
"conditions_found": conditions,
"medications_found": medications,
"vitals_found": vitals,
"procedures_found": procedures,
"patient_info_extracted": patient_info_found,
"total_entities": conditions + medications + vitals + procedures,
"confidence_score": confidence,
"extraction_category": "clinical_data"
})
def log_rule_based_processing(self, entities_found: int, conditions: int, medications: int, vitals: int, confidence: float, processing_time: float):
"""Log rule-based processing fallback"""
self.log_event("rule_based_processing_complete", {
"total_entities": entities_found,
"conditions_found": conditions,
"medications_found": medications,
"vitals_found": vitals,
"confidence_score": confidence,
"processing_time": processing_time,
"processing_mode": "rule_based_fallback",
"fallback_triggered": True
})
# === FHIR VALIDATION MONITORING ===
def log_fhir_validation(self, is_valid: bool, compliance_score: float, validation_level: str, fhir_version: str = "R4", resource_types: List[str] = None):
"""Log FHIR validation results"""
self.log_event("fhir_validation_complete", {
"is_valid": is_valid,
"compliance_score": compliance_score,
"validation_level": validation_level,
"fhir_version": fhir_version,
"resource_types": resource_types or [],
"validation_type": "bundle_validation"
})
def log_fhir_structure_validation(self, structure_valid: bool, resource_types: List[str], validation_time: float, errors: List[str] = None):
"""Log FHIR structure validation"""
self.log_event("fhir_structure_validation", {
"structure_valid": structure_valid,
"resource_types_detected": resource_types,
"validation_time": validation_time,
"error_count": len(errors) if errors else 0,
"validation_errors": errors or [],
"validator_type": "pydantic_fhir"
})
def log_fhir_terminology_validation(self, terminology_valid: bool, codes_validated: int, loinc_found: bool, snomed_found: bool, validation_time: float):
"""Log FHIR terminology validation"""
self.log_event("fhir_terminology_validation", {
"terminology_valid": terminology_valid,
"codes_validated": codes_validated,
"loinc_codes_found": loinc_found,
"snomed_codes_found": snomed_found,
"validation_time": validation_time,
"coding_systems": ["LOINC" if loinc_found else "", "SNOMED" if snomed_found else ""],
"validator_type": "medical_terminology"
})
def log_hipaa_compliance_check(self, is_compliant: bool, phi_protected: bool, security_met: bool, validation_time: float, errors: List[str] = None):
"""Log HIPAA compliance validation"""
self.log_event("hipaa_compliance_check", {
"hipaa_compliant": is_compliant,
"phi_properly_protected": phi_protected,
"security_requirements_met": security_met,
"validation_time": validation_time,
"compliance_errors": errors or [],
"compliance_level": "healthcare_grade",
"validator_type": "hipaa_checker"
})
def log_fhir_bundle_generation(self, patient_resources: int, condition_resources: int, observation_resources: int, generation_time: float, success: bool):
"""Log FHIR bundle generation"""
self.log_event("fhir_bundle_generation", {
"patient_resources": patient_resources,
"condition_resources": condition_resources,
"observation_resources": observation_resources,
"total_resources": patient_resources + condition_resources + observation_resources,
"generation_time": generation_time,
"generation_success": success,
"bundle_type": "document",
"generator_type": "pydantic_fhir"
})
# === WORKFLOW MONITORING ===
def log_document_processing_start(self, document_type: str, text_length: int, extract_entities: bool, generate_fhir: bool):
"""Log start of document processing"""
self.log_event("document_processing_start", {
"document_type": document_type,
"text_length": text_length,
"extract_entities": extract_entities,
"generate_fhir": generate_fhir,
"workflow_stage": "initialization"
})
def log_document_processing_complete(self, success: bool, processing_time: float, entities_found: int, fhir_generated: bool, quality_score: float):
"""Log completion of document processing"""
self.log_event("document_processing_complete", {
"processing_success": success,
"total_processing_time": processing_time,
"entities_extracted": entities_found,
"fhir_bundle_generated": fhir_generated,
"quality_score": quality_score,
"workflow_stage": "completion"
})
def log_workflow_summary(self, documents_processed: int, successful_documents: int, total_time: float, average_time: float, monitoring_active: bool):
"""Log overall workflow summary"""
self.log_event("workflow_summary", {
"documents_processed": documents_processed,
"successful_documents": successful_documents,
"failed_documents": documents_processed - successful_documents,
"success_rate": successful_documents / documents_processed if documents_processed > 0 else 0,
"total_processing_time": total_time,
"average_time_per_document": average_time,
"monitoring_active": monitoring_active,
"workflow_type": "real_medical_processing"
})
def log_mcp_tool(self, tool_name: str, success: bool, processing_time: float, input_size: int = 0, entities_found: int = 0):
"""Log MCP tool execution"""
self.log_event("mcp_tool_execution", {
"tool_name": tool_name,
"success": success,
"processing_time": processing_time,
"input_size": input_size,
"entities_found": entities_found,
"mcp_protocol_version": "2024-11-05"
})
def log_mcp_server_start(self, server_name: str, tools_count: int, port: int):
"""Log MCP server startup"""
self.log_event("mcp_server_startup", {
"server_name": server_name,
"tools_available": tools_count,
"port": port,
"protocol": "mcp_2024"
})
def log_mcp_authentication(self, auth_method: str, success: bool, user_id: str = None):
"""Log MCP authentication events"""
self.log_event("mcp_authentication", {
"auth_method": auth_method,
"success": success,
"user_id": user_id or "anonymous",
"security_level": "a2a_api"
})
# === MISTRAL OCR MONITORING ===
def log_mistral_ocr_processing(self, document_size: int, extraction_time: float, success: bool, text_length: int = 0, error: str = None):
"""Log Mistral OCR API processing"""
self.log_event("mistral_ocr_processing", {
"document_size_bytes": document_size,
"extraction_time": extraction_time,
"success": success,
"extracted_text_length": text_length,
"error": error,
"ocr_provider": "mistral_api"
})
def log_ocr_workflow_integration(self, ocr_method: str, agent_processing_time: float, total_workflow_time: float, entities_found: int):
"""Log complete OCR → Agent workflow integration"""
self.log_event("ocr_workflow_integration", {
"ocr_method": ocr_method,
"agent_processing_time": agent_processing_time,
"total_workflow_time": total_workflow_time,
"entities_extracted": entities_found,
"workflow_type": "ocr_to_agent_pipeline"
})
# === A2A API MONITORING ===
def log_a2a_api_request(self, endpoint: str, method: str, auth_method: str, request_size: int, user_id: str = None):
"""Log A2A API request"""
self.log_event("a2a_api_request", {
"endpoint": endpoint,
"method": method,
"auth_method": auth_method,
"request_size_bytes": request_size,
"user_id": user_id or "anonymous",
"api_version": "v1.0"
})
def log_a2a_api_response(self, endpoint: str, status_code: int, response_time: float, success: bool, entities_processed: int = 0):
"""Log A2A API response"""
self.log_event("a2a_api_response", {
"endpoint": endpoint,
"status_code": status_code,
"response_time": response_time,
"success": success,
"entities_processed": entities_processed,
"api_type": "rest_a2a"
})
def log_a2a_authentication(self, auth_provider: str, success: bool, auth_time: float, user_claims: Dict[str, Any] = None):
"""Log A2A authentication events"""
self.log_event("a2a_authentication", {
"auth_provider": auth_provider,
"success": success,
"auth_time": auth_time,
"user_claims": user_claims or {},
"security_level": "production" if auth_provider == "auth0" else "development"
})
# === MODAL SCALING MONITORING ===
def log_modal_function_call(self, function_name: str, gpu_type: str, processing_time: float, cost_estimate: float, container_id: str):
"""Log Modal function execution"""
self.log_event("modal_function_call", {
"function_name": function_name,
"gpu_type": gpu_type,
"processing_time": processing_time,
"cost_estimate": cost_estimate,
"container_id": container_id,
"cloud_provider": "modal_labs"
})
def log_modal_scaling_event(self, event_type: str, container_count: int, gpu_utilization: str, auto_scaling: bool):
"""Log Modal auto-scaling events"""
self.log_event("modal_scaling_event", {
"event_type": event_type, # scale_up, scale_down, container_start, container_stop
"container_count": container_count,
"gpu_utilization": gpu_utilization,
"auto_scaling_active": auto_scaling,
"scaling_provider": "modal_l4"
})
def log_modal_deployment(self, app_name: str, functions_deployed: int, success: bool, deployment_time: float):
"""Log Modal deployment events"""
self.log_event("modal_deployment", {
"app_name": app_name,
"functions_deployed": functions_deployed,
"deployment_success": success,
"deployment_time": deployment_time,
"deployment_target": "modal_serverless"
})
def log_modal_cost_tracking(self, daily_cost: float, requests_processed: int, cost_per_request: float, gpu_hours: float):
"""Log Modal cost analytics"""
self.log_event("modal_cost_tracking", {
"daily_cost": daily_cost,
"requests_processed": requests_processed,
"cost_per_request": cost_per_request,
"gpu_hours_used": gpu_hours,
"cost_optimization": "l4_gpu_auto_scaling"
})
# === DOCKER DEPLOYMENT MONITORING ===
def log_docker_deployment(self, compose_file: str, services_started: int, success: bool, startup_time: float):
"""Log Docker Compose deployment"""
self.log_event("docker_deployment", {
"compose_file": compose_file,
"services_started": services_started,
"deployment_success": success,
"startup_time": startup_time,
"deployment_type": "docker_compose"
})
def log_docker_service_health(self, service_name: str, status: str, response_time: float, healthy: bool):
"""Log Docker service health checks"""
self.log_event("docker_service_health", {
"service_name": service_name,
"status": status,
"response_time": response_time,
"healthy": healthy,
"monitoring_type": "health_check"
})
# === ERROR AND PERFORMANCE MONITORING ===
def log_error_event(self, error_type: str, error_message: str, stack_trace: str, component: str, severity: str = "error"):
"""Log error events with context"""
self.log_event("error_event", {
"error_type": error_type,
"error_message": error_message,
"stack_trace": stack_trace,
"component": component,
"severity": severity,
"timestamp": time.time()
})
def log_performance_metrics(self, component: str, cpu_usage: float, memory_usage: float, response_time: float, throughput: float):
"""Log performance metrics"""
self.log_event("performance_metrics", {
"component": component,
"cpu_usage_percent": cpu_usage,
"memory_usage_mb": memory_usage,
"response_time": response_time,
"throughput_requests_per_second": throughput,
"metrics_type": "system_performance"
})
# === LANGFUSE TRACE UTILITIES ===
def create_langfuse_trace(self, name: str, input_data: Dict[str, Any] = None, session_id: str = None) -> Any:
"""Create a Langfuse trace if available"""
if self.langfuse:
try:
return self.langfuse.trace(
name=name,
input=input_data or {},
session_id=session_id or self.session_id
)
except Exception:
return None
return None
def update_langfuse_trace(self, trace: Any, output: Dict[str, Any] = None, metadata: Dict[str, Any] = None):
"""Update a Langfuse trace if available"""
if trace and self.langfuse:
try:
trace.update(
output=output or {},
metadata=metadata or {}
)
except Exception:
pass
def get_monitoring_status(self) -> Dict[str, Any]:
"""Get comprehensive monitoring status"""
return {
"langfuse_enabled": self.langfuse is not None,
"session_id": self.session_id,
"langfuse_host": os.getenv("LANGFUSE_HOST", "https://cloud.langfuse.com") if self.langfuse else None,
"monitoring_active": True,
"events_logged": True,
"trace_collection": "enabled" if self.langfuse else "disabled"
}
@contextmanager
def trace_operation(self, operation_name: str, input_data: Dict[str, Any] = None):
"""Context manager for tracing operations"""
trace = None
if self.langfuse:
try:
trace = self.langfuse.trace(
name=operation_name,
input=input_data or {},
session_id=self.session_id
)
except Exception:
# Silently fail trace creation to avoid disrupting workflow
trace = None
start_time = time.time()
try:
yield trace
except Exception as e:
if trace:
try:
trace.update(
output={"error": str(e), "status": "failed"},
metadata={"processing_time": time.time() - start_time}
)
except Exception:
# Silently fail trace update
pass
raise
else:
if trace:
try:
trace.update(
metadata={"processing_time": time.time() - start_time, "status": "completed"}
)
except Exception:
# Silently fail trace update
pass
@contextmanager
def trace_ai_processing(self, model: str, text_length: int, temperature: float, max_tokens: int):
"""Context manager specifically for AI processing operations"""
with self.trace_operation("ai_model_processing", {
"model": model,
"input_length": text_length,
"temperature": temperature,
"max_tokens": max_tokens,
"processing_type": "medical_extraction"
}) as trace:
yield trace
@contextmanager
def trace_fhir_validation(self, validation_level: str, resource_count: int):
"""Context manager specifically for FHIR validation operations"""
with self.trace_operation("fhir_validation_process", {
"validation_level": validation_level,
"resource_count": resource_count,
"fhir_version": "R4",
"validation_type": "comprehensive"
}) as trace:
yield trace
@contextmanager
def trace_document_workflow(self, document_type: str, text_length: int):
"""Context manager for complete document processing workflow"""
with self.trace_operation("document_processing_workflow", {
"document_type": document_type,
"text_length": text_length,
"workflow_type": "end_to_end_medical"
}) as trace:
yield trace
def get_langchain_callback(self):
"""Get LangChain callback handler for monitoring"""
if LANGCHAIN_AVAILABLE and self.langfuse:
try:
return self.langfuse.get_langchain_callback(session_id=self.session_id)
except Exception:
return None
return None
def process_with_langchain(self, text: str, operation: str = "document_processing"):
"""Process text using LangChain with monitoring"""
if not LANGCHAIN_AVAILABLE:
return {"processed_text": text, "chunks": [text]}
try:
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=100,
separators=["\n\n", "\n", ".", " "]
)
chunks = splitter.split_text(text)
self.log_event("langchain_processing", {
"operation": operation,
"chunk_count": len(chunks),
"total_length": len(text)
})
return {"processed_text": text, "chunks": chunks}
except Exception as e:
self.log_event("langchain_error", {"error": str(e), "operation": operation})
return {"processed_text": text, "chunks": [text], "error": str(e)}
# Global monitor instance
monitor = FhirFlameMonitor()
# Convenience decorators
def track_medical_processing(operation: str):
"""Convenience decorator for medical processing tracking"""
return monitor.track_operation(f"medical_{operation}")
def track_performance(func):
"""Decorator to track function performance"""
@wraps(func)
async def wrapper(*args, **kwargs):
start_time = time.time()
result = await func(*args, **kwargs)
processing_time = time.time() - start_time
monitor.log_event("performance", {
"function": func.__name__,
"processing_time": processing_time
})
return result
return wrapper
# Make available for import
__all__ = ["FhirFlameMonitor", "monitor", "track_medical_processing", "track_performance"] |