File size: 13,815 Bytes
a963d65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
"""
FhirFlame Workflow Orchestrator
Model-agnostic orchestrator that respects user preferences for OCR and LLM models
"""
import asyncio
import time
import os
from typing import Dict, Any, Optional, Union
from .file_processor import local_processor
from .codellama_processor import CodeLlamaProcessor
from .monitoring import monitor
class WorkflowOrchestrator:
"""Model-agnostic workflow orchestrator for medical document processing"""
def __init__(self):
self.local_processor = local_processor
self.codellama_processor = CodeLlamaProcessor()
self.mistral_api_key = os.getenv("MISTRAL_API_KEY")
# Available models configuration
self.available_models = {
"codellama": {
"processor": self.codellama_processor,
"name": "CodeLlama 13B-Instruct",
"available": True
},
"huggingface": {
"processor": self.codellama_processor, # Will be enhanced processor in app.py
"name": "HuggingFace API",
"available": True
},
"nlp_basic": {
"processor": self.codellama_processor, # Basic fallback
"name": "NLP Basic Processing",
"available": True
}
# Future models can be added here
}
self.available_ocr_methods = {
"mistral": {
"name": "Mistral OCR API",
"available": bool(self.mistral_api_key),
"requires_api": True
},
"local": {
"name": "Local OCR Processor",
"available": True,
"requires_api": False
}
}
@monitor.track_operation("complete_document_workflow")
async def process_complete_workflow(
self,
document_bytes: Optional[bytes] = None,
medical_text: Optional[str] = None,
user_id: str = "workflow-user",
filename: str = "medical_document",
document_type: str = "clinical_note",
use_mistral_ocr: bool = None,
use_advanced_llm: bool = True,
llm_model: str = "codellama",
generate_fhir: bool = True
) -> Dict[str, Any]:
"""
Complete workflow: Document β OCR β Entity Extraction β FHIR Generation
Args:
document_bytes: Document content as bytes
medical_text: Direct text input (alternative to document_bytes)
user_id: User identifier for tracking
filename: Original filename for metadata
document_type: Type of medical document
use_mistral_ocr: Whether to use Mistral OCR API vs local OCR
use_advanced_llm: Whether to use advanced LLM processing
llm_model: Which LLM model to use (currently supports 'codellama')
generate_fhir: Whether to generate FHIR bundles
"""
workflow_start = time.time()
extracted_text = None
ocr_method_used = None
llm_processing_result = None
# Stage 1: Text Extraction
if document_bytes:
ocr_start_time = time.time()
# Auto-select Mistral if available and not explicitly disabled
if use_mistral_ocr is None:
use_mistral_ocr = bool(self.mistral_api_key)
# Choose OCR method based on user preference and availability
if use_mistral_ocr and self.mistral_api_key:
monitor.log_event("workflow_stage_start", {
"stage": "mistral_ocr_extraction",
"document_size": len(document_bytes),
"filename": filename
})
# Use Mistral OCR for text extraction
extracted_text = await self.local_processor._extract_with_mistral(document_bytes)
ocr_processing_time = time.time() - ocr_start_time
ocr_method_used = "mistral_api"
# Log Mistral OCR processing
monitor.log_mistral_ocr_processing(
document_size=len(document_bytes),
extraction_time=ocr_processing_time,
success=True,
text_length=len(extracted_text)
)
else:
# Use local processor
result = await self.local_processor.process_document(
document_bytes, user_id, filename
)
extracted_text = result.get('extracted_text', '')
ocr_method_used = "local_processor"
elif medical_text:
# Direct text input
extracted_text = medical_text
ocr_method_used = "direct_input"
else:
raise ValueError("Either document_bytes or medical_text must be provided")
# Stage 2: Medical Entity Extraction
if use_advanced_llm and llm_model in self.available_models:
model_config = self.available_models[llm_model]
if model_config["available"]:
monitor.log_event("workflow_stage_start", {
"stage": "llm_entity_extraction",
"model": llm_model,
"text_length": len(extracted_text),
"ocr_method": ocr_method_used
})
# Prepare source metadata
source_metadata = {
"extraction_method": ocr_method_used,
"original_filename": filename,
"document_size": len(document_bytes) if document_bytes else None,
"workflow_stage": "post_ocr_extraction" if document_bytes else "direct_text_input",
"llm_model": llm_model
}
# DEBUG: before entity extraction call
monitor.log_event("entity_extraction_pre_call", {
"provider": llm_model,
"text_snippet": extracted_text[:100]
})
llm_processing_result = await model_config["processor"].process_document(
medical_text=extracted_text,
document_type=document_type,
extract_entities=True,
generate_fhir=generate_fhir,
source_metadata=source_metadata
)
# DEBUG: after entity extraction call
monitor.log_event("entity_extraction_post_call", {
"provider": llm_model,
"extraction_results": llm_processing_result.get("extraction_results", {}),
"fhir_bundle_present": "fhir_bundle" in llm_processing_result
})
else:
# Model not available, use basic processing
llm_processing_result = {
"extracted_data": '{"error": "Advanced LLM not available"}',
"extraction_results": {
"entities_found": 0,
"quality_score": 0.0
},
"metadata": {
"model_used": "none",
"processing_time": 0.0
}
}
else:
# Basic text processing without advanced LLM
llm_processing_result = {
"extracted_data": f'{{"text_length": {len(extracted_text)}, "processing_mode": "basic"}}',
"extraction_results": {
"entities_found": 0,
"quality_score": 0.5
},
"metadata": {
"model_used": "basic_processor",
"processing_time": 0.1
}
}
# Stage 3: FHIR Validation (if FHIR bundle was generated)
fhir_validation_result = None
if generate_fhir and llm_processing_result.get('fhir_bundle'):
from .fhir_validator import FhirValidator
validator = FhirValidator()
monitor.log_event("workflow_stage_start", {
"stage": "fhir_validation",
"bundle_generated": True
})
fhir_validation_result = validator.validate_fhir_bundle(llm_processing_result['fhir_bundle'])
monitor.log_event("fhir_validation_complete", {
"is_valid": fhir_validation_result['is_valid'],
"compliance_score": fhir_validation_result['compliance_score'],
"validation_level": fhir_validation_result['validation_level']
})
# Stage 4: Workflow Results Assembly
workflow_time = time.time() - workflow_start
# Determine completed stages
stages_completed = ["text_extraction"]
if use_advanced_llm:
stages_completed.append("entity_extraction")
if generate_fhir:
stages_completed.append("fhir_generation")
if fhir_validation_result:
stages_completed.append("fhir_validation")
integrated_result = {
"workflow_metadata": {
"total_processing_time": workflow_time,
"mistral_ocr_used": ocr_method_used == "mistral_api",
"ocr_method": ocr_method_used,
"llm_model": llm_model if use_advanced_llm else "none",
"advanced_llm_used": use_advanced_llm,
"fhir_generated": generate_fhir,
"stages_completed": stages_completed,
"user_id": user_id,
"filename": filename,
"document_type": document_type
},
"text_extraction": {
"extracted_text": extracted_text[:500] + "..." if len(extracted_text) > 500 else extracted_text,
"full_text_length": len(extracted_text),
"extraction_method": ocr_method_used
},
"medical_analysis": {
"entities_found": llm_processing_result["extraction_results"]["entities_found"],
"quality_score": llm_processing_result["extraction_results"]["quality_score"],
"model_used": llm_processing_result["metadata"]["model_used"],
"extracted_data": llm_processing_result["extracted_data"]
},
"fhir_bundle": llm_processing_result.get("fhir_bundle") if generate_fhir else None,
"fhir_validation": fhir_validation_result,
"status": "success",
"processing_mode": "integrated_workflow"
}
# Log workflow completion
monitor.log_workflow_summary(
documents_processed=1,
successful_documents=1,
total_time=workflow_time,
average_time=workflow_time,
monitoring_active=monitor.langfuse is not None
)
# Log OCR workflow integration if OCR was used
if ocr_method_used in ["mistral_api", "local_processor"]:
monitor.log_ocr_workflow_integration(
ocr_method=ocr_method_used,
agent_processing_time=llm_processing_result["metadata"]["processing_time"],
total_workflow_time=workflow_time,
entities_found=llm_processing_result["extraction_results"]["entities_found"]
)
monitor.log_event("complete_workflow_success", {
"total_time": workflow_time,
"ocr_method": ocr_method_used,
"llm_model": llm_model if use_advanced_llm else "none",
"entities_found": llm_processing_result["extraction_results"]["entities_found"],
"fhir_generated": generate_fhir and "fhir_bundle" in llm_processing_result,
"processing_pipeline": f"{ocr_method_used} β {llm_model if use_advanced_llm else 'basic'} β {'fhir' if generate_fhir else 'no-fhir'}"
})
return integrated_result
def get_workflow_status(self) -> Dict[str, Any]:
"""Get current workflow configuration and available models"""
monitoring_status = monitor.get_monitoring_status()
return {
"available_ocr_methods": self.available_ocr_methods,
"available_llm_models": self.available_models,
"mistral_api_key_configured": bool(self.mistral_api_key),
"monitoring_enabled": monitoring_status["langfuse_enabled"],
"monitoring_status": monitoring_status,
"default_configuration": {
"ocr_method": "mistral" if self.mistral_api_key else "local",
"llm_model": "codellama",
"generate_fhir": True
}
}
def get_available_models(self) -> Dict[str, Any]:
"""Get list of available models for UI dropdowns"""
return {
"ocr_methods": [
{"value": "mistral", "label": "Mistral OCR API", "available": bool(self.mistral_api_key)},
{"value": "local", "label": "Local OCR Processor", "available": True}
],
"llm_models": [
{"value": "codellama", "label": "CodeLlama 13B-Instruct", "available": True},
{"value": "basic", "label": "Basic Text Processing", "available": True}
]
}
# Global workflow orchestrator instance
workflow_orchestrator = WorkflowOrchestrator() |