File size: 7,794 Bytes
a963d65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
#!/usr/bin/env python3
"""
Quick Test: Modal Scaling Implementation
Test the key components of our 3-prompt implementation
"""
import asyncio
import os
import sys
import time
def test_environment_config():
"""Test 1: Environment configuration"""
print("π Test 1: Environment Configuration")
# Test cost configuration loading
a100_rate = float(os.getenv("MODAL_A100_HOURLY_RATE", "1.32"))
t4_rate = float(os.getenv("MODAL_T4_HOURLY_RATE", "0.51"))
platform_fee = float(os.getenv("MODAL_PLATFORM_FEE", "15"))
print(f"β
A100 Rate: ${a100_rate}/hour")
print(f"β
T4 Rate: ${t4_rate}/hour")
print(f"β
Platform Fee: {platform_fee}%")
assert a100_rate > 0 and t4_rate > 0 and platform_fee > 0
return True
def test_cost_calculation():
"""Test 2: Real cost calculation"""
print("\nπ Test 2: Cost Calculation")
try:
from src.enhanced_codellama_processor import EnhancedCodeLlamaProcessor, InferenceProvider
processor = EnhancedCodeLlamaProcessor()
# Test different scenarios
test_cases = [
("Short text", "Patient has diabetes", 0.5, "T4"),
("Long text", "Patient has diabetes. " * 100, 1.2, "A100"),
("Ollama local", "Test text", 0.8, None)
]
for name, text, proc_time, gpu_type in test_cases:
# Test Modal cost
modal_cost = processor._calculate_cost(
InferenceProvider.MODAL, len(text), proc_time, gpu_type
)
# Test Ollama cost
ollama_cost = processor._calculate_cost(
InferenceProvider.OLLAMA, len(text)
)
# Test HuggingFace cost
hf_cost = processor._calculate_cost(
InferenceProvider.HUGGINGFACE, len(text)
)
print(f" {name}:")
print(f" Modal ({gpu_type}): ${modal_cost:.6f}")
print(f" Ollama: ${ollama_cost:.6f}")
print(f" HuggingFace: ${hf_cost:.6f}")
return True
except Exception as e:
print(f"β Cost calculation test failed: {e}")
return False
async def test_modal_integration():
"""Test 3: Modal integration"""
print("\nπ Test 3: Modal Integration")
try:
from src.enhanced_codellama_processor import EnhancedCodeLlamaProcessor
processor = EnhancedCodeLlamaProcessor()
# Test with simulation (since Modal endpoint may not be deployed)
test_text = """
Patient John Doe, 45 years old, presents with chest pain.
Diagnosed with acute myocardial infarction.
Treatment: Aspirin 325mg, Metoprolol 25mg BID.
"""
result = await processor._call_modal_api(
text=test_text,
document_type="clinical_note",
extract_entities=True,
generate_fhir=False
)
print("β
Modal API call completed")
# Check result structure
if "scaling_metadata" in result:
scaling = result["scaling_metadata"]
print(f"β
Provider: {scaling.get('provider', 'unknown')}")
print(f"β
Cost: ${scaling.get('cost_estimate', 0):.6f}")
print(f"β
Container: {scaling.get('container_id', 'N/A')}")
return True
except Exception as e:
print(f"β Modal integration test failed: {e}")
return False
def test_modal_deployment():
"""Test 4: Modal deployment file"""
print("\nπ Test 4: Modal Deployment")
try:
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from modal.functions import calculate_real_modal_cost
# Test cost calculation function for L4 (RTX 4090 equivalent)
cost_l4 = calculate_real_modal_cost(1.0, "L4")
cost_cpu = calculate_real_modal_cost(1.0, "CPU")
print(f"β
L4 GPU 1s cost: ${cost_l4:.6f}")
print(f"β
CPU 1s cost: ${cost_cpu:.6f}")
# Verify L4 is more expensive than CPU
if cost_l4 > cost_cpu:
print("β
Cost hierarchy correct (L4 > CPU)")
return True
else:
print("β οΈ Cost hierarchy issue")
return False
except Exception as e:
print(f"β Modal deployment test failed: {e}")
return False
async def test_end_to_end():
"""Test 5: End-to-end scaling demo"""
print("\nπ Test 5: End-to-End Demo")
try:
from src.enhanced_codellama_processor import EnhancedCodeLlamaProcessor
processor = EnhancedCodeLlamaProcessor()
# Test auto-selection logic
short_text = "Patient has hypertension"
long_text = "Patient John Doe presents with chest pain. " * 30
# Test provider selection
short_provider = processor.router.select_optimal_provider(short_text)
long_provider = processor.router.select_optimal_provider(long_text)
print(f"β
Short text β {short_provider.value}")
print(f"β
Long text β {long_provider.value}")
# Test processing with cost calculation
result = await processor.process_document(
medical_text=long_text,
document_type="clinical_note",
extract_entities=True,
generate_fhir=False,
complexity="medium"
)
if result and "provider_metadata" in result:
meta = result["provider_metadata"]
print(f"β
Processed with: {meta.get('provider_used', 'unknown')}")
print(f"β
Cost estimate: ${meta.get('cost_estimate', 0):.6f}")
print(f"β
Processing time: {meta.get('processing_time', 0):.2f}s")
return True
except Exception as e:
print(f"β End-to-end test failed: {e}")
return False
async def main():
"""Run focused tests"""
print("π Testing Modal Scaling Implementation")
print("=" * 50)
tests = [
("Environment Config", test_environment_config),
("Cost Calculation", test_cost_calculation),
("Modal Integration", test_modal_integration),
("Modal Deployment", test_modal_deployment),
("End-to-End Demo", test_end_to_end)
]
results = {}
for test_name, test_func in tests:
try:
if asyncio.iscoroutinefunction(test_func):
result = await test_func()
else:
result = test_func()
results[test_name] = result
except Exception as e:
print(f"β Test {test_name} crashed: {e}")
results[test_name] = False
# Summary
print("\n" + "=" * 50)
print("π Test Results")
print("=" * 50)
passed = sum(1 for r in results.values() if r)
total = len(results)
for test_name, result in results.items():
status = "β
PASS" if result else "β FAIL"
print(f"{test_name}: {status}")
print(f"\nOverall: {passed}/{total} tests passed")
if passed == total:
print("π Modal scaling implementation is working!")
print("\nπ Next Steps:")
print("1. Set MODAL_TOKEN_ID and MODAL_TOKEN_SECRET in .env")
print("2. Deploy: modal deploy modal_deployment.py")
print("3. Set MODAL_ENDPOINT_URL in .env")
print("4. Test Dynamic Scaling tab in Gradio UI")
else:
print("β οΈ Some tests failed. Check the details above.")
return passed == total
if __name__ == "__main__":
asyncio.run(main()) |