fhirflame / frontend_ui.py
leksval
fix in gradio settings tab
7d76d0d
raw
history blame
66.4 kB
import gradio as gr
import pandas as pd
import time
import threading
import asyncio
import sys
import os
import datetime
from src.heavy_workload_demo import ModalContainerScalingDemo, RealTimeBatchProcessor
# Import dashboard functions from app.py to ensure proper integration
sys.path.append(os.path.dirname(__file__))
# Use dynamic import to avoid circular dependency issues
dashboard_state = None
add_file_to_dashboard = None
get_dashboard_status = None
get_processing_queue = None
get_dashboard_metrics = None
get_jobs_history = None
def _ensure_app_imports():
"""Dynamically import app functions to avoid circular dependencies"""
global dashboard_state, add_file_to_dashboard, get_dashboard_status
global get_processing_queue, get_dashboard_metrics, get_jobs_history
if dashboard_state is None:
try:
from app import (
dashboard_state as _dashboard_state,
add_file_to_dashboard as _add_file_to_dashboard,
get_dashboard_status as _get_dashboard_status,
get_processing_queue as _get_processing_queue,
get_dashboard_metrics as _get_dashboard_metrics,
get_jobs_history as _get_jobs_history
)
dashboard_state = _dashboard_state
add_file_to_dashboard = _add_file_to_dashboard
get_dashboard_status = _get_dashboard_status
get_processing_queue = _get_processing_queue
get_dashboard_metrics = _get_dashboard_metrics
get_jobs_history = _get_jobs_history
except ImportError as e:
print(f"Warning: Could not import dashboard functions: {e}")
# Set fallback functions that return empty data
dashboard_state = {"active_tasks": 0, "total_files": 0}
add_file_to_dashboard = lambda *args, **kwargs: None
get_dashboard_status = lambda: "πŸ“Š Dashboard not available"
get_processing_queue = lambda: [["Status", "Not Available"]]
get_dashboard_metrics = lambda: [["Metric", "Not Available"]]
get_jobs_history = lambda: []
# Initialize demo components
heavy_workload_demo = ModalContainerScalingDemo()
batch_processor = RealTimeBatchProcessor()
# Global reference to dashboard function (set by create_medical_ui)
_add_file_to_dashboard = None
def is_modal_available():
"""Check if Modal environment is available"""
try:
import modal
return True
except ImportError:
return False
def get_environment_name():
"""Get current deployment environment name"""
if is_modal_available():
return "Modal Cloud"
else:
return "Local/HuggingFace"
def create_text_processing_tab(process_text_only, cancel_current_task, get_dashboard_status,
dashboard_state, get_dashboard_metrics):
"""Create the text processing tab"""
with gr.Tab("πŸ“ Text Processing"):
gr.Markdown("### Medical Text Analysis")
gr.Markdown("Process medical text directly with entity extraction and FHIR generation")
with gr.Row():
with gr.Column():
gr.Markdown("### Medical Text Input")
text_input = gr.Textbox(
label="Medical Text",
placeholder="Enter medical text here...",
lines=8
)
enable_fhir_text = gr.Checkbox(
label="Generate FHIR Resources",
value=False
)
with gr.Row():
process_text_btn = gr.Button("πŸ” Process Text", variant="primary")
cancel_text_btn = gr.Button("❌ Cancel", variant="secondary", visible=False)
with gr.Column():
gr.Markdown("### Results")
text_status = gr.HTML(value="πŸ”„ Ready to process")
with gr.Accordion("πŸ” Entities", open=True):
extracted_entities = gr.JSON(label="Entities")
with gr.Accordion("πŸ₯ FHIR", open=True):
fhir_resources = gr.JSON(label="FHIR Data")
return {
"text_input": text_input,
"enable_fhir_text": enable_fhir_text,
"process_text_btn": process_text_btn,
"cancel_text_btn": cancel_text_btn,
"text_status": text_status,
"extracted_entities": extracted_entities,
"fhir_resources": fhir_resources
}
def create_document_upload_tab(process_file_only, cancel_current_task, get_dashboard_status,
dashboard_state, get_dashboard_metrics):
"""Create the document upload tab"""
with gr.Tab("πŸ“„ Document Upload"):
gr.Markdown("### Document Processing")
gr.Markdown("Upload and process medical documents with comprehensive analysis")
gr.Markdown("**Supported formats:** PDF, DOCX, DOC, TXT, JPG, JPEG, PNG, GIF, BMP, WEBP, TIFF")
with gr.Row():
with gr.Column():
gr.Markdown("### Document Upload")
file_input = gr.File(
label="Upload Medical Document",
file_types=[".pdf", ".docx", ".doc", ".txt", ".jpg", ".jpeg", ".png", ".gif", ".bmp", ".webp", ".tiff", ".tif"]
)
enable_mistral_ocr = gr.Checkbox(
label="πŸ” Enable Mistral OCR (Advanced OCR for Images/PDFs)",
value=True,
info="Uses Mistral API for enhanced OCR processing of images and scanned documents"
)
enable_fhir_file = gr.Checkbox(
label="Generate FHIR Resources",
value=False
)
with gr.Row():
process_file_btn = gr.Button("πŸ“„ Process File", variant="primary")
cancel_file_btn = gr.Button("❌ Cancel", variant="secondary", visible=False)
with gr.Column():
gr.Markdown("### Results")
file_status = gr.HTML(value="Ready to process documents")
with gr.Accordion("πŸ” Entities", open=True):
file_entities = gr.JSON(label="Entities")
with gr.Accordion("πŸ₯ FHIR", open=True):
file_fhir = gr.JSON(label="FHIR Data")
return {
"file_input": file_input,
"enable_mistral_ocr": enable_mistral_ocr,
"enable_fhir_file": enable_fhir_file,
"process_file_btn": process_file_btn,
"cancel_file_btn": cancel_file_btn,
"file_status": file_status,
"file_entities": file_entities,
"file_fhir": file_fhir
}
def create_dicom_processing_tab(process_dicom_only, cancel_current_task, get_dashboard_status,
dashboard_state, get_dashboard_metrics):
"""Create the DICOM processing tab"""
with gr.Tab("πŸ₯ DICOM Processing"):
gr.Markdown("### Medical Imaging Analysis")
gr.Markdown("Process DICOM files for medical imaging analysis and metadata extraction")
with gr.Row():
with gr.Column():
gr.Markdown("### DICOM Upload")
dicom_input = gr.File(
label="Upload DICOM File",
file_types=[".dcm", ".dicom"]
)
with gr.Row():
process_dicom_btn = gr.Button("πŸ₯ Process DICOM", variant="primary")
cancel_dicom_btn = gr.Button("❌ Cancel", variant="secondary", visible=False)
with gr.Column():
gr.Markdown("### Results")
dicom_status = gr.HTML(value="Ready to process DICOM files")
with gr.Accordion("πŸ“Š DICOM Analysis", open=False):
dicom_analysis = gr.JSON(label="DICOM Metadata & Analysis")
with gr.Accordion("πŸ₯ FHIR Imaging", open=True):
dicom_fhir = gr.JSON(label="FHIR ImagingStudy")
return {
"dicom_input": dicom_input,
"process_dicom_btn": process_dicom_btn,
"cancel_dicom_btn": cancel_dicom_btn,
"dicom_status": dicom_status,
"dicom_analysis": dicom_analysis,
"dicom_fhir": dicom_fhir
}
def create_heavy_workload_tab():
"""Create the heavy workload demo tab"""
with gr.Tab("πŸš€ Heavy Workload Demo"):
if is_modal_available():
# Demo title
gr.Markdown("## πŸš€ FhirFlame Modal Container Auto-Scaling Demo")
gr.Markdown(f"**Environment:** {get_environment_name()}")
gr.Markdown("This demo showcases automatic horizontal scaling of containers based on workload.")
# Demo controls
with gr.Row():
with gr.Column():
gr.Markdown("### Demo Controls")
container_table = gr.Dataframe(
headers=["Container ID", "Region", "Status", "Requests/sec", "Queue", "Processed", "Entities", "FHIR", "Uptime"],
datatype=["str", "str", "str", "str", "number", "number", "number", "number", "str"],
label="πŸ“Š Active Containers",
interactive=False
)
with gr.Row():
start_demo_btn = gr.Button("πŸš€ Start Modal Container Scaling", variant="primary")
stop_demo_btn = gr.Button("⏹️ Stop Demo", variant="secondary", visible=False)
refresh_btn = gr.Button("πŸ”„ Refresh", variant="secondary")
with gr.Column():
gr.Markdown("### Scaling Metrics")
scaling_metrics = gr.Dataframe(
headers=["Metric", "Value"],
label="πŸ“ˆ Scaling Status",
interactive=False
)
workload_chart = gr.Plot(label="πŸ“Š Workload & Scaling Chart")
# Event handlers with button state management
def start_demo_with_state():
result = start_heavy_workload()
return result + (gr.update(visible=True),) # Show stop button
def stop_demo_with_state():
result = stop_heavy_workload()
return result + (gr.update(visible=False),) # Hide stop button
start_demo_btn.click(
fn=start_demo_with_state,
outputs=[container_table, scaling_metrics, workload_chart, stop_demo_btn]
)
stop_demo_btn.click(
fn=stop_demo_with_state,
outputs=[container_table, scaling_metrics, workload_chart, stop_demo_btn]
)
refresh_btn.click(
fn=refresh_demo_data,
outputs=[container_table, scaling_metrics, workload_chart]
)
else:
gr.Markdown("## ⚠️ Modal Environment Not Available")
gr.Markdown("This demo requires Modal cloud environment to showcase container scaling.")
gr.Markdown("Currently running in: **Local/HuggingFace Environment**")
# Show static placeholder
placeholder_data = [
["container-1", "us-east", "Simulated", "45", 12, 234, 1890, 45, "2h 34m"],
["container-2", "us-west", "Simulated", "67", 8, 456, 3245, 89, "1h 12m"],
["container-3", "eu-west", "Simulated", "23", 3, 123, 987, 23, "45m"]
]
gr.Dataframe(
value=placeholder_data,
headers=["Container ID", "Region", "Status", "Requests/sec", "Queue", "Processed", "Entities", "FHIR", "Uptime"],
label="πŸ“Š Demo Container Data (Simulated)",
interactive=False
)
def create_system_stats_tab(get_simple_agent_status):
"""Create the system stats tab"""
with gr.Tab("πŸ“Š System Dashboard"):
gr.Markdown("## System Status & Metrics")
gr.Markdown("*Updates when tasks complete or fail*")
with gr.Row():
with gr.Column():
gr.Markdown("### πŸ–₯️ System Status")
agent_status_display = gr.HTML(
value=get_simple_agent_status()
)
with gr.Row():
refresh_status_btn = gr.Button("πŸ”„ Refresh Status", variant="secondary")
last_updated_display = gr.HTML(
value="<p><small>Last updated: Never</small></p>"
)
with gr.Column():
gr.Markdown("### πŸ“ File Processing Dashboard")
processing_status = gr.HTML(
value="<p>πŸ“Š No files processed yet</p>"
)
metrics_display = gr.DataFrame(
value=[["Total Files", 0], ["Success Rate", "0%"], ["Last Update", "None"]],
headers=["Metric", "Value"],
label="πŸ“ŠMetrics",
interactive=False
)
# Add processed jobs history
gr.Markdown("### πŸ“‹ Recent Processing Jobs")
jobs_history_display = gr.DataFrame(
value=[],
headers=["Job Name", "Category", "Status", "Processing Time"],
label="βš™οΈProcessing Jobs History",
interactive=False,
column_widths=["50%", "20%", "15%", "15%"]
)
# Add database management section
gr.Markdown("### πŸ—‚οΈ Database Management")
with gr.Row():
clear_db_btn = gr.Button("πŸ—‘οΈ Clear Database", variant="secondary", size="sm")
clear_status = gr.Markdown("", visible=False)
def clear_database():
try:
# Import database functions
from database import clear_all_jobs
clear_all_jobs()
return gr.update(value="βœ… Database cleared successfully!", visible=True)
except Exception as e:
return gr.update(value=f"❌ Error clearing database: {e}", visible=True)
clear_db_btn.click(
fn=clear_database,
outputs=clear_status
)
return {
"agent_status_display": agent_status_display,
"refresh_status_btn": refresh_status_btn,
"last_updated_display": last_updated_display,
"processing_status": processing_status,
"metrics_display": metrics_display,
"files_history": jobs_history_display
}
def create_medical_ui(process_text_only, process_file_only, process_dicom_only,
cancel_current_task, get_dashboard_status, dashboard_state,
get_dashboard_metrics, get_simple_agent_status,
get_enhanced_codellama, add_file_to_dashboard):
"""Create the main medical interface with all tabs"""
global _add_file_to_dashboard
_add_file_to_dashboard = add_file_to_dashboard
# Clean, organized CSS for FhirFlame branding
logo_css = """
<style>
/* ====== LOGO STYLING ====== */
.fhirflame-logo-zero-padding img {
width: 100% !important;
height: 100% !important;
object-fit: contain !important;
padding: 0 !important;
margin: 0 !important;
display: block !important;
}
.fhirflame-subtitle {
color: var(--body-text-color-subdued, #474747);
font-size: 16px;
font-weight: normal;
line-height: 1.5;
text-align: left;
max-width: 800px;
margin: 0;
padding: 0;
display: block;
}
.fhirflame-mvp-text {
color: var(--body-text-color) !important;
opacity: 0.7 !important;
font-weight: 500 !important;
}
/* ====== BRAND COLORS ====== */
/* Primary buttons - red */
button[data-variant="primary"],
.gr-button[data-variant="primary"],
.gr-button-primary,
.primary {
background: #B71C1C !important;
border-color: #B71C1C !important;
}
button[data-variant="primary"]:hover,
.gr-button[data-variant="primary"]:hover,
.gr-button-primary:hover {
background: #9B1B1B !important;
border-color: #9B1B1B !important;
}
/* Selected tabs - red with BLACK underlines */
.gr-tab-nav button.selected,
button[role="tab"][aria-selected="true"],
.gr-tabs button.selected,
.gr-tabs .gr-tab-nav button[aria-selected="true"] {
background: #B71C1C !important;
border-color: #B71C1C !important;
color: white !important;
border-bottom: 3px solid #000000 !important;
}
/* Tab underlines and borders - BLACK */
.gr-tab-nav button.selected::after,
.gr-tab-nav button:focus::after,
.gr-tab-nav button:active::after,
button[role="tab"][aria-selected="true"]::after,
.gr-tabs button.selected::after,
.gr-tabs button:hover::after,
.gr-tabs button:focus::after,
.gr-tabs button:active::after {
background: #000000 !important;
border-color: #000000 !important;
border-bottom-color: #000000 !important;
}
/* Tab containers and nav */
.gr-tab-nav,
.gr-tabs {
border-bottom: 1px solid #000000 !important;
}
/* Checkboxes - red */
input[type="checkbox"]:checked,
.gr-checkbox input:checked {
background-color: #B71C1C !important;
border-color: #B71C1C !important;
accent-color: #B71C1C !important;
}
/* Progress bars - red */
.progress-bar,
.gr-progress,
[role="progressbar"] {
background-color: #B71C1C !important;
}
/* Links - red */
a {
color: #B71C1C !important;
}
a:hover {
color: #9B1B1B !important;
}
/* ====== SLIDERS - BLACK ULTRA AGGRESSIVE ====== */
input[type="range"],
.gr-slider input[type="range"],
.gradio-container input[type="range"],
div input[type="range"],
span input[type="range"],
* input[type="range"] {
accent-color: #000000 !important;
background: transparent !important;
}
input[type="range"]::-webkit-slider-thumb,
.gr-slider input[type="range"]::-webkit-slider-thumb,
.gradio-container input[type="range"]::-webkit-slider-thumb {
background: #000000 !important;
border-color: #000000 !important;
color: #000000 !important;
}
input[type="range"]::-moz-range-thumb,
.gr-slider input[type="range"]::-moz-range-thumb,
.gradio-container input[type="range"]::-moz-range-thumb {
background: #000000 !important;
border-color: #000000 !important;
color: #000000 !important;
}
input[type="range"]::-webkit-slider-runnable-track,
input[type="range"]::-moz-range-track {
background: linear-gradient(to right, #000000 0%, #000000 var(--value, 50%), #e0e0e0 var(--value, 50%), #e0e0e0 100%) !important;
}
/* Force all slider containers to use black */
.gr-block input[type="range"],
.gr-form input[type="range"],
div[data-testid*="slider"] input[type="range"],
div[data-testid*="range"] input[type="range"] {
accent-color: #000000 !important;
}
/* ====== PREVENT BLACK BACKGROUNDS ON TEXT ====== */
label,
.gr-label,
.gr-markdown,
.gr-text,
span,
div:not(.gr-button):not([role="button"]) {
background: transparent !important;
}
/* ====== THEME ADAPTATION ====== */
.gr-form,
.gr-block,
.gradio-container {
background: var(--background-fill-primary) !important;
color: var(--body-text-color) !important;
}
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3, .gr-markdown h4, .gr-markdown h5, .gr-markdown h6 {
color: var(--body-text-color) !important;
}
.gr-markdown p, .gr-markdown span, .gr-markdown div {
color: var(--body-text-color-subdued) !important;
}
/* ====== OVERRIDE ORANGE - NUCLEAR OPTION ====== */
/* Override CSS variables */
:root {
--slider-color: #000000 !important;
--accent-color: #000000 !important;
--primary-hue: 0 !important;
--primary-sat: 100% !important;
--primary-lit: 27% !important;
--color-orange: #000000 !important;
--primary-500: #B71C1C !important;
--primary-600: #B71C1C !important;
}
/* Target ALL orange styles - BLACK in light mode, RED in dark mode */
*[style*="rgb(255, 165, 0)"],
*[style*="rgb(255,165,0)"],
*[style*="#ff8c00"],
*[style*="#ffa500"],
*[style*="orange"],
*[style*="hsl(39"],
*[style*="hsl(38"],
*[style*="hsl(40"],
*[class*="orange"],
.orange,
[data-color="orange"] {
background-color: #000000 !important;
color: #000000 !important;
border-color: #000000 !important;
accent-color: #000000 !important;
}
/* Dark mode: Orange elements should be RED */
@media (prefers-color-scheme: dark) {
*[style*="rgb(255, 165, 0)"],
*[style*="rgb(255,165,0)"],
*[style*="#ff8c00"],
*[style*="#ffa500"],
*[style*="orange"],
*[style*="hsl(39"],
*[style*="hsl(38"],
*[style*="hsl(40"],
*[class*="orange"],
.orange,
[data-color="orange"] {
background-color: #B71C1C !important;
color: #B71C1C !important;
border-color: #B71C1C !important;
accent-color: #B71C1C !important;
}
}
/* Also handle Gradio's dark theme class */
.dark *[style*="rgb(255, 165, 0)"],
.dark *[style*="rgb(255,165,0)"],
.dark *[style*="#ff8c00"],
.dark *[style*="#ffa500"],
.dark *[style*="orange"],
.dark *[style*="hsl(39"],
.dark *[style*="hsl(38"],
.dark *[style*="hsl(40"],
.dark *[class*="orange"],
.dark .orange,
.dark [data-color="orange"] {
background-color: #B71C1C !important;
color: #B71C1C !important;
border-color: #B71C1C !important;
accent-color: #B71C1C !important;
}
/* Slider-specific orange override */
*[style*="rgb(255, 165, 0)"] input[type="range"],
*[style*="orange"] input[type="range"],
input[type="range"][style*="orange"],
input[type="range"][style*="rgb(255, 165, 0)"] {
accent-color: #000000 !important;
}
/* Dark mode: Slider-specific orange override */
@media (prefers-color-scheme: dark) {
*[style*="rgb(255, 165, 0)"] input[type="range"],
*[style*="orange"] input[type="range"],
input[type="range"][style*="orange"],
input[type="range"][style*="rgb(255, 165, 0)"] {
accent-color: #B71C1C !important;
}
}
/* Also handle Gradio's dark theme class for sliders */
.dark *[style*="rgb(255, 165, 0)"] input[type="range"],
.dark *[style*="orange"] input[type="range"],
.dark input[type="range"][style*="orange"],
.dark input[type="range"][style*="rgb(255, 165, 0)"] {
accent-color: #B71C1C !important;
}
/* Orange elements to red for buttons only */
button[style*="orange"],
.gr-button[style*="orange"],
button[style*="rgb(255, 165, 0)"],
.gr-button[style*="rgb(255, 165, 0)"] {
background-color: #B71C1C !important;
border-color: #B71C1C !important;
}
/* Force black on ALL accent colors */
* {
accent-color: #000000 !important;
}
/* But allow red for buttons */
button, .gr-button, [role="button"] {
accent-color: #B71C1C !important;
}
/* Fix Gradio settings modal alignment issues */
.gradio-container .settings-panel,
.gradio-container .modal,
.gradio-container .sidebar {
position: fixed !important;
top: 0 !important;
left: auto !important;
right: 0 !important;
z-index: 9999 !important;
background: white !important;
border: 1px solid #ccc !important;
box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important;
padding: 20px !important;
width: 400px !important;
max-height: 90vh !important;
overflow-y: auto !important;
font-family: Arial, sans-serif !important;
border-radius: 8px !important;
}
</style>
"""
with gr.Blocks(title="FhirFlame: Real-Time Medical AI Processing & FHIR Generation", css=logo_css) as demo:
# FhirFlame Official Logo Header - Using exact-sized SVG (450Γ—150px)
gr.Image(
value="fhirflame_logo_450x150.svg",
type="filepath",
height="105px",
width="315px",
show_label=False,
show_download_button=False,
show_fullscreen_button=False,
show_share_button=False,
container=False,
interactive=False,
elem_classes=["fhirflame-logo-zero-padding"]
)
# Subtitle below logo
gr.HTML(f"""
<div class="fhirflame-subtitle">
<strong>Medical AI System Demonstration</strong><br>
<strong>Dockerized Healthcare AI Platform: Local/Cloud/Hybrid Deployment + Agent/MCP Server + FHIR R4/R5 + DICOM Processing + CodeLlama Integration</strong><br>
<span class="fhirflame-mvp-text">🚧 MVP/Prototype | Hackathon Submission</span>
</div>
""")
# Main tab container - all tabs at the same level
with gr.Tabs():
# Create all main tabs
text_components = create_text_processing_tab(
process_text_only, cancel_current_task, get_dashboard_status,
dashboard_state, get_dashboard_metrics
)
file_components = create_document_upload_tab(
process_file_only, cancel_current_task, get_dashboard_status,
dashboard_state, get_dashboard_metrics
)
dicom_components = create_dicom_processing_tab(
process_dicom_only, cancel_current_task, get_dashboard_status,
dashboard_state, get_dashboard_metrics
)
# Heavy Workload Demo Tab
create_heavy_workload_tab()
# Batch Processing Demo Tab - Need to create dashboard components first
with gr.Tab("πŸ”„ Batch Processing Demo"):
# Dashboard function is already set globally in create_medical_ui
gr.Markdown("## πŸ”„ Real-Time Medical Batch Processing")
gr.Markdown("Demonstrates live batch processing of sample medical documents with real-time progress tracking (no OCR required)")
with gr.Row():
with gr.Column():
gr.Markdown("### Batch Configuration")
batch_size = gr.Slider(
minimum=5,
maximum=50,
step=5,
value=10,
label="Batch Size"
)
processing_type = gr.Radio(
choices=["Clinical Notes Sample", "Lab Reports Sample", "Discharge Summaries Sample"],
value="Clinical Notes Sample",
label="Sample File Category"
)
enable_live_updates = gr.Checkbox(
value=True,
label="Live Progress Updates"
)
with gr.Row():
start_demo_btn = gr.Button("πŸš€ Start Live Processing", variant="primary")
stop_demo_btn = gr.Button("⏹️ Stop Processing", visible=False)
with gr.Column():
gr.Markdown("### Live Progress")
batch_status = gr.Markdown("πŸ”„ Ready to start batch processing")
processing_log = gr.Textbox(
label="Processing Log",
lines=8,
interactive=False
)
results_summary = gr.JSON(
label="Results Summary",
value=create_empty_results_summary()
)
# Timer for real-time updates
status_timer = gr.Timer(value=1.0, active=False)
# Connect event handlers with button state management
def start_processing_with_timer(batch_size, processing_type, enable_live_updates):
result = start_live_processing(batch_size, processing_type, enable_live_updates)
# Get dashboard updates
# Activate timer for real-time updates
return result + (gr.update(visible=True), gr.Timer(active=True),
get_dashboard_status() if get_dashboard_status else "<p>Dashboard not available</p>",
get_dashboard_metrics() if get_dashboard_metrics else [])
def stop_processing_with_timer():
result = stop_processing()
# Get dashboard updates
# Deactivate timer when processing stops
return result + (gr.update(visible=False), gr.Timer(active=False),
get_dashboard_status() if get_dashboard_status else "<p>Dashboard not available</p>",
get_dashboard_metrics() if get_dashboard_metrics else [])
# System Dashboard Tab - at the far right (after Batch Processing)
stats_components = create_system_stats_tab(get_simple_agent_status)
# Get processing queue and metrics from stats for batch processing integration
processing_status = stats_components["processing_status"]
metrics_display = stats_components["metrics_display"]
# Connect batch processing timer and buttons
files_history_component = stats_components["files_history"]
status_timer.tick(
fn=update_batch_status_realtime,
outputs=[batch_status, processing_log, results_summary,
processing_status, metrics_display,
files_history_component]
)
start_demo_btn.click(
fn=start_processing_with_timer,
inputs=[batch_size, processing_type, enable_live_updates],
outputs=[batch_status, processing_log, results_summary, stop_demo_btn, status_timer,
processing_status, metrics_display]
)
stop_demo_btn.click(
fn=stop_processing_with_timer,
outputs=[batch_status, processing_log, stop_demo_btn, status_timer,
processing_status, metrics_display]
)
# Enhanced event handlers with button state management
def process_text_with_state(text_input, enable_fhir):
# Ensure dashboard functions are available
_ensure_app_imports()
# Get core processing results (3 values)
status, entities, fhir_resources = process_text_only(text_input, enable_fhir)
# Return 7 values expected by Gradio outputs
return (
status, entities, fhir_resources, # Core results (3)
get_dashboard_status(), # Dashboard status (1)
get_dashboard_metrics(), # Dashboard metrics (1)
get_jobs_history(), # Jobs history (1)
gr.update(visible=True) # Cancel button state (1)
)
def process_file_with_state(file_input, enable_mistral_ocr, enable_fhir):
# Ensure dashboard functions are available
_ensure_app_imports()
# Get core processing results (3 values) - pass mistral_ocr parameter
status, entities, fhir_resources = process_file_only(file_input, enable_mistral_ocr, enable_fhir)
# Return 7 values expected by Gradio outputs
return (
status, entities, fhir_resources, # Core results (3)
get_dashboard_status(), # Dashboard status (1)
get_dashboard_metrics(), # Dashboard metrics (1)
get_jobs_history(), # Jobs history (1)
gr.update(visible=True) # Cancel button state (1)
)
def process_dicom_with_state(dicom_input):
# Ensure dashboard functions are available
_ensure_app_imports()
# Get core processing results (3 values)
status, analysis, fhir_imaging = process_dicom_only(dicom_input)
# Return 8 values expected by Gradio outputs
return (
status, analysis, fhir_imaging, # Core results (3)
get_dashboard_status(), # Dashboard status (1)
get_dashboard_metrics(), # Dashboard metrics (1)
get_jobs_history(), # Jobs history (1)
gr.update(visible=True) # Cancel button state (1)
)
text_components["process_text_btn"].click(
fn=process_text_with_state,
inputs=[text_components["text_input"], text_components["enable_fhir_text"]],
outputs=[text_components["text_status"], text_components["extracted_entities"],
text_components["fhir_resources"], processing_status,
metrics_display, files_history_component, text_components["cancel_text_btn"]]
)
file_components["process_file_btn"].click(
fn=process_file_with_state,
inputs=[file_components["file_input"], file_components["enable_mistral_ocr"], file_components["enable_fhir_file"]],
outputs=[file_components["file_status"], file_components["file_entities"],
file_components["file_fhir"], processing_status,
metrics_display, files_history_component, file_components["cancel_file_btn"]]
)
dicom_components["process_dicom_btn"].click(
fn=process_dicom_with_state,
inputs=[dicom_components["dicom_input"]],
outputs=[dicom_components["dicom_status"], dicom_components["dicom_analysis"],
dicom_components["dicom_fhir"], processing_status,
metrics_display, files_history_component, dicom_components["cancel_dicom_btn"]]
)
# Cancel button event handlers - properly interrupt processing and reset state
def cancel_text_task():
# Force stop current processing and reset state
status = cancel_current_task("text_task")
# Return ready state and clear results
ready_status = "πŸ”„ Processing cancelled. Ready for next text analysis."
return ready_status, {}, {}, get_dashboard_status(), get_dashboard_metrics(), get_jobs_history(), gr.update(visible=False)
def cancel_file_task():
# Force stop current processing and reset state
status = cancel_current_task("file_task")
# Return ready state and clear results
ready_status = "πŸ”„ Processing cancelled. Ready for next document upload."
return ready_status, {}, {}, get_dashboard_status(), get_dashboard_metrics(), get_jobs_history(), gr.update(visible=False)
def cancel_dicom_task():
# Force stop current processing and reset state
status = cancel_current_task("dicom_task")
# Return ready state and clear results
ready_status = "πŸ”„ Processing cancelled. Ready for next DICOM analysis."
return ready_status, {}, {}, get_dashboard_status(), get_dashboard_metrics(), get_jobs_history(), gr.update(visible=False)
text_components["cancel_text_btn"].click(
fn=cancel_text_task,
outputs=[text_components["text_status"], text_components["extracted_entities"],
text_components["fhir_resources"], processing_status,
metrics_display, files_history_component, text_components["cancel_text_btn"]]
)
file_components["cancel_file_btn"].click(
fn=cancel_file_task,
outputs=[file_components["file_status"], file_components["file_entities"],
file_components["file_fhir"], processing_status,
metrics_display, files_history_component, file_components["cancel_file_btn"]]
)
dicom_components["cancel_dicom_btn"].click(
fn=cancel_dicom_task,
outputs=[dicom_components["dicom_status"], dicom_components["dicom_analysis"],
dicom_components["dicom_fhir"], processing_status,
metrics_display, files_history_component, dicom_components["cancel_dicom_btn"]]
)
# Add refresh status button click handler
def refresh_agent_status():
"""Refresh the agent status display"""
import time
status_html = get_simple_agent_status()
timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
last_updated_html = f"<p><small>Last updated: {timestamp}</small></p>"
return status_html, last_updated_html
stats_components["refresh_status_btn"].click(
fn=refresh_agent_status,
outputs=[stats_components["agent_status_display"], stats_components["last_updated_display"]]
)
return demo
# Helper functions for demos
def start_heavy_workload():
"""Start the heavy workload demo with real Modal container scaling"""
import asyncio
try:
# Start the Modal container scaling demo
result = asyncio.run(heavy_workload_demo.start_modal_scaling_demo())
# Get initial container data
containers = heavy_workload_demo.get_container_details()
# Get scaling metrics
stats = heavy_workload_demo.get_demo_statistics()
metrics_data = [
["Demo Status", stats['demo_status']],
["Active Containers", stats['active_containers']],
["Requests/sec", stats['requests_per_second']],
["Total Processed", stats['total_requests_processed']],
["Scaling Strategy", stats['scaling_strategy']],
["Cost per Request", stats['cost_per_request']],
["Runtime", stats['total_runtime']]
]
# Create basic workload chart data (placeholder for now)
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Scatter(x=[0, 1, 2], y=[1, 5, 15], mode='lines+markers', name='Containers'))
fig.update_layout(title="Container Scaling Over Time", xaxis_title="Time (min)", yaxis_title="Container Count")
return containers, metrics_data, fig
except Exception as e:
error_data = [["Error", f"Failed to start demo: {str(e)}"]]
return [], error_data, None
def stop_heavy_workload():
"""Stop the heavy workload demo"""
try:
# Stop the Modal container scaling demo
heavy_workload_demo.stop_demo()
# Get final container data (should be empty or scaled down)
containers = heavy_workload_demo.get_container_details()
# Get final metrics
stats = heavy_workload_demo.get_demo_statistics()
metrics_data = [
["Demo Status", "Demo Stopped"],
["Active Containers", 0],
["Requests/sec", 0],
["Total Processed", stats['total_requests_processed']],
["Final Runtime", stats['total_runtime']],
["Cost per Request", stats['cost_per_request']]
]
# Empty chart when stopped
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Scatter(x=[0], y=[0], mode='markers', name='Stopped'))
fig.update_layout(title="Demo Stopped", xaxis_title="Time", yaxis_title="Containers")
return containers, metrics_data, fig
except Exception as e:
error_data = [["Error", f"Failed to stop demo: {str(e)}"]]
return [], error_data, None
def refresh_demo_data():
"""Refresh demo data with current container status"""
try:
# Get current container data
containers = heavy_workload_demo.get_container_details()
# Get current scaling metrics
stats = heavy_workload_demo.get_demo_statistics()
metrics_data = [
["Demo Status", stats['demo_status']],
["Active Containers", stats['active_containers']],
["Requests/sec", stats['requests_per_second']],
["Total Processed", stats['total_requests_processed']],
["Concurrent Requests", stats['concurrent_requests']],
["Scaling Strategy", stats['scaling_strategy']],
["Cost per Request", stats['cost_per_request']],
["Runtime", stats['total_runtime']]
]
# Update workload chart with current data
import plotly.graph_objects as go
import time
# Simulate time series data for demo
current_time = time.time()
times = [(current_time - 60 + i*10) for i in range(7)] # Last 60 seconds
container_counts = [1, 2, 5, 8, 12, 15, stats['active_containers']]
fig = go.Figure()
fig.add_trace(go.Scatter(
x=times,
y=container_counts,
mode='lines+markers',
name='Container Count',
line=dict(color='#B71C1C', width=3)
))
fig.update_layout(
title="Modal Container Auto-Scaling",
xaxis_title="Time",
yaxis_title="Active Containers",
showlegend=True
)
return containers, metrics_data, fig
except Exception as e:
error_data = [["Error", f"Failed to refresh: {str(e)}"]]
return [], error_data, None
def start_live_processing(batch_size, processing_type, enable_live_updates):
"""Start live batch processing with real progress tracking"""
try:
# Update main dashboard too
# Map sample file categories to workflow types (no OCR used)
workflow_map = {
"Clinical Notes Sample": "clinical_fhir",
"Lab Reports Sample": "lab_entities",
"Discharge Summaries Sample": "clinical_fhir"
}
workflow_type = workflow_map.get(processing_type, "clinical_fhir")
# Start batch processing with real data (no OCR used)
success = batch_processor.start_processing(
workflow_type=workflow_type,
batch_size=batch_size,
progress_callback=None # We'll check status periodically
)
if success:
# Update main dashboard to show batch processing activity
dashboard_state["active_tasks"] += 1
dashboard_state["last_update"] = f"Batch processing started: {batch_size} sample documents"
status = f"πŸ”„ **Processing Started**\nBatch Size: {batch_size}\nSample Category: {processing_type}\nWorkflow: {workflow_type}"
log = f"Started processing {batch_size} {processing_type.lower()} using {workflow_type} workflow (no OCR)\n"
results = {
"total_documents": batch_size,
"processed": 0,
"entities_extracted": 0,
"fhir_resources_generated": 0,
"processing_time": "0s",
"avg_time_per_doc": "0s"
}
return status, log, results
else:
return "❌ Failed to start processing - already running", "", {}
except Exception as e:
return f"❌ Error starting processing: {str(e)}", "", {}
def stop_processing():
"""Stop batch processing"""
try:
batch_processor.stop_processing()
# Get final status
final_status = batch_processor.get_status()
# Update main dashboard when stopping
if dashboard_state["active_tasks"] > 0:
dashboard_state["active_tasks"] -= 1
current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
if final_status["status"] == "completed":
log = f"Processing completed: {final_status['processed']} documents in {final_status['total_time']:.2f}s\n"
dashboard_state["last_update"] = f"Batch completed: {final_status['processed']} documents at {current_time}"
else:
log = "Processing stopped by user\n"
dashboard_state["last_update"] = f"Batch stopped by user at {current_time}"
return "⏹️ Processing stopped", log
except Exception as e:
return f"❌ Error stopping processing: {str(e)}", ""
# Global state tracking to prevent UI blinking/flashing
_last_dashboard_state = {}
_last_batch_status = {}
_batch_completion_processed = False # Track if we've already processed completion
def update_batch_status_realtime():
"""Real-time status updates for batch processing - called by timer"""
try:
status = batch_processor.get_status()
# Track current state to prevent unnecessary updates and blinking
global _last_dashboard_state, _last_batch_status, _batch_completion_processed
# If batch is completed and we've already processed it, stop all updates
if status["status"] == "completed" and _batch_completion_processed:
return (
gr.update(), # batch_status - no update
gr.update(), # processing_log - no update
gr.update(), # results_summary - no update
gr.update(), # processing_status - no update
gr.update(), # metrics_display - no update
gr.update() # files_history - no update
)
current_dashboard_state = {
'total_files': dashboard_state.get('total_files', 0),
'successful_files': dashboard_state.get('successful_files', 0),
'failed_files': dashboard_state.get('failed_files', 0),
'active_tasks': dashboard_state.get('active_tasks', 0),
'last_update': dashboard_state.get('last_update', 'Never')
}
current_batch_state = {
'status': status.get('status', 'ready'),
'processed': status.get('processed', 0),
'total': status.get('total', 0),
'elapsed_time': status.get('elapsed_time', 0)
}
# Check if dashboard state has changed
dashboard_changed = current_dashboard_state != _last_dashboard_state
batch_changed = current_batch_state != _last_batch_status
# Update tracking state
_last_dashboard_state = current_dashboard_state.copy()
_last_batch_status = current_batch_state.copy()
# Mark completion as processed to prevent repeated updates
if status["status"] == "completed":
_last_batch_status['completion_processed'] = True
if status["status"] == "ready":
# Reset completion flag for new batch
_batch_completion_processed = False
return (
"πŸ”„ Ready to start batch processing",
"",
create_empty_results_summary(),
get_dashboard_status() if get_dashboard_status else "<p>Dashboard not available</p>",
get_dashboard_metrics() if get_dashboard_metrics else [],
get_jobs_history() if get_jobs_history else []
)
elif status["status"] == "processing":
# Update main dashboard with current progress
processed_docs = status['processed']
total_docs = status['total']
# Add newly completed documents to dashboard in real-time
results = status.get('results', [])
if results and _add_file_to_dashboard:
# Check if there are new completed documents since last update
completed_count = len([r for r in results if r.get('status') == 'completed'])
dashboard_processed = dashboard_state.get('batch_processed_count', 0)
# Add new completed documents to dashboard
if completed_count > dashboard_processed:
for i in range(dashboard_processed, completed_count):
if i < len(results):
result = results[i]
sample_category = status.get('current_workflow', 'Sample Document')
processing_time = result.get('processing_time', 0)
_add_file_to_dashboard(
filename=f"Batch Document {i+1}",
file_type=f"{sample_category} (Batch)",
success=True,
processing_time=f"{processing_time:.2f}s",
error=None
)
dashboard_state['batch_processed_count'] = completed_count
# Update dashboard state to show batch processing activity
dashboard_state["last_update"] = f"Batch processing: {processed_docs}/{total_docs} documents"
# Calculate progress
progress_percent = (processed_docs / total_docs) * 100
# Create progress bar HTML
progress_html = f"""
<div style="margin: 10px 0;">
<div style="background: #f0f0f0; border-radius: 10px; overflow: hidden;">
<div style="background: linear-gradient(90deg, #4CAF50, #2196F3);
height: 20px; width: {progress_percent}%;
display: flex; align-items: center; justify-content: center;
color: white; font-weight: bold;">
{progress_percent:.1f}%
</div>
</div>
</div>
"""
# Enhanced status text
current_step_desc = status.get('current_step_description', 'Processing...')
status_text = f"""
πŸ”„ **Processing in Progress**
{progress_html}
**Document:** {processed_docs}/{total_docs}
**Current Step:** {current_step_desc}
**Elapsed:** {status['elapsed_time']:.1f}s
**Estimated Remaining:** {status['estimated_remaining']:.1f}s
"""
# Build clean processing log - remove duplicates and show only key milestones
log_entries = []
processing_log = status.get('processing_log', [])
# Group log entries by document and show only completion status
doc_status = {}
for log_entry in processing_log:
doc_num = log_entry.get('document', 0)
step = log_entry.get('step', '')
message = log_entry.get('message', '')
# Only keep completion messages and avoid duplicates
if 'completed' in step or 'Document' in message and 'completed' in message:
doc_status[doc_num] = f"πŸ“„ Doc {doc_num}: {message}"
elif doc_num not in doc_status and ('processing' in step or 'Processing' in message):
doc_status[doc_num] = f"πŸ“„ Doc {doc_num}: Processing..."
# Show last 6 documents progress
recent_docs = sorted(doc_status.keys())[-6:]
for doc_num in recent_docs:
log_entries.append(doc_status[doc_num])
log_text = "\n".join(log_entries) if log_entries else "Starting batch processing..."
# Calculate metrics from results
results = status.get('results', [])
total_entities = sum(len(result.get('entities', [])) for result in results)
total_fhir = sum(1 for result in results if result.get('fhir_bundle_generated', False))
results_summary = {
"total_documents": status['total'],
"processed": status['processed'],
"entities_extracted": total_entities,
"fhir_resources_generated": total_fhir,
"processing_time": f"{status['elapsed_time']:.1f}s",
"avg_time_per_doc": f"{status['elapsed_time']/status['processed']:.1f}s" if status['processed'] > 0 else "0s",
"documents_per_second": f"{status['processed']/status['elapsed_time']:.2f}" if status['elapsed_time'] > 0 else "0"
}
# Return with dashboard updates
return (status_text, log_text, results_summary,
get_dashboard_status() if get_dashboard_status else "<p>Dashboard not available</p>",
get_dashboard_metrics() if get_dashboard_metrics else [],
get_jobs_history() if get_jobs_history else [])
elif status["status"] == "completed":
# Mark completion as processed to stop future updates
_batch_completion_processed = True
# Processing completed - add all processed documents to main dashboard
results = status.get('results', [])
total_entities = sum(len(result.get('entities', [])) for result in results)
total_fhir = sum(1 for result in results if result.get('fhir_bundle_generated', False))
# Add each processed document to the main dashboard
import datetime
current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Ensure we have the add_file_to_dashboard function
try:
from app import add_file_to_dashboard
for i, result in enumerate(results):
doc_id = result.get('document_id', f'batch_doc_{i+1}')
entities_count = len(result.get('entities', []))
processing_time = result.get('processing_time', 0)
fhir_generated = result.get('fhir_bundle_generated', False)
# Add to dashboard as individual file - this will update all counters automatically
sample_category = status.get('processing_type', 'Batch Demo Document')
add_file_to_dashboard(
filename=f"Batch Document {i+1}",
file_type=f"{sample_category}",
success=True,
processing_time=f"{processing_time:.2f}s",
error=None,
entities_found=entities_count
)
except Exception as e:
print(f"Error adding batch files to dashboard: {e}")
# Update final dashboard state
if dashboard_state["active_tasks"] > 0:
dashboard_state["active_tasks"] -= 1
dashboard_state["last_update"] = f"Batch completed: {status['processed']} documents at {current_time}"
completion_text = f"""
βœ… **Processing Completed Successfully!**
πŸ“Š **Final Results:**
- **Documents Processed:** {status['processed']}/{status['total']}
- **Total Processing Time:** {status['total_time']:.2f}s
- **Average Time per Document:** {status['total_time']/status['processed']:.2f}s
- **Documents per Second:** {status['processed']/status['total_time']:.2f}
- **Total Entities Extracted:** {total_entities}
- **FHIR Resources Generated:** {total_fhir}
πŸŽ‰ **All documents added to File Processing Dashboard!**
"""
final_results = {
"total_documents": status['total'],
"processed": status['processed'],
"entities_extracted": total_entities,
"fhir_resources_generated": total_fhir,
"processing_time": f"{status['total_time']:.1f}s",
"avg_time_per_doc": f"{status['total_time']/status['processed']:.1f}s",
"documents_per_second": f"{status['processed']/status['total_time']:.2f}"
}
# Return with dashboard updates
return (completion_text, "πŸŽ‰ All documents processed successfully!", final_results,
get_dashboard_status() if get_dashboard_status else "<p>Dashboard not available</p>",
get_dashboard_metrics() if get_dashboard_metrics else [],
get_jobs_history() if get_jobs_history else [])
else: # cancelled or error
return (f"⚠️ Processing {status['status']}", status.get('message', ''), create_empty_results_summary(),
get_dashboard_status() if get_dashboard_status else "<p>Dashboard not available</p>",
get_dashboard_metrics() if get_dashboard_metrics else [],
get_jobs_history() if get_jobs_history else [])
except Exception as e:
return (f"❌ Status update error: {str(e)}", "", create_empty_results_summary(),
get_dashboard_status() if get_dashboard_status else "<p>Dashboard not available</p>",
get_dashboard_metrics() if get_dashboard_metrics else [],
get_jobs_history() if get_jobs_history else [])
def create_empty_results_summary():
"""Create empty results summary"""
return {
"total_documents": 0,
"processed": 0,
"entities_extracted": 0,
"fhir_resources_generated": 0,
"processing_time": "0s",
"avg_time_per_doc": "0s"
}
def get_batch_processing_status():
"""Get current batch processing status with detailed step-by-step feedback"""
try:
status = batch_processor.get_status()
if status["status"] == "ready":
return "πŸ”„ Ready to start batch processing", "", {
"total_documents": 0,
"processed": 0,
"entities_extracted": 0,
"fhir_resources_generated": 0,
"processing_time": "0s",
"avg_time_per_doc": "0s"
}
elif status["status"] == "processing":
# Enhanced progress text with current step information
current_step_desc = status.get('current_step_description', 'Processing...')
progress_text = f"πŸ”„ **Processing in Progress**\nProgress: {status['progress']:.1f}%\nDocument: {status['processed']}/{status['total']}\nCurrent Step: {current_step_desc}\nElapsed: {status['elapsed_time']:.1f}s\nEstimated remaining: {status['estimated_remaining']:.1f}s"
# Build clean log with recent processing steps - avoid duplicates
log_entries = []
processing_log = status.get('processing_log', [])
# Group by document to avoid duplicates
doc_status = {}
for log_entry in processing_log:
doc_num = log_entry.get('document', 0)
step = log_entry.get('step', '')
message = log_entry.get('message', '')
# Only keep meaningful completion messages
if 'completed' in step or ('completed' in message and 'entities' in message):
doc_status[doc_num] = f"Doc {doc_num}: Completed"
elif doc_num not in doc_status:
doc_status[doc_num] = f"Doc {doc_num}: Processing..."
# Show last 5 documents
recent_docs = sorted(doc_status.keys())[-5:]
for doc_num in recent_docs:
log_entries.append(doc_status[doc_num])
log_text = "\n".join(log_entries) + "\n"
# Calculate entities and FHIR from results so far
results = status.get('results', [])
total_entities = sum(len(result.get('entities', [])) for result in results)
total_fhir = sum(1 for result in results if result.get('fhir_bundle_generated', False))
results_summary = {
"total_documents": status['total'],
"processed": status['processed'],
"entities_extracted": total_entities,
"fhir_resources_generated": total_fhir,
"processing_time": f"{status['elapsed_time']:.1f}s",
"avg_time_per_doc": f"{status['elapsed_time']/status['processed']:.1f}s" if status['processed'] > 0 else "0s"
}
return progress_text, log_text, results_summary
elif status["status"] == "cancelled":
cancelled_text = f"⏹️ **Processing Cancelled**\nProcessed: {status['processed']}/{status['total']} ({status['progress']:.1f}%)\nElapsed time: {status['elapsed_time']:.1f}s"
# Calculate partial results
results = status.get('results', [])
total_entities = sum(len(result.get('entities', [])) for result in results)
total_fhir = sum(1 for result in results if result.get('fhir_bundle_generated', False))
partial_results = {
"total_documents": status['total'],
"processed": status['processed'],
"entities_extracted": total_entities,
"fhir_resources_generated": total_fhir,
"processing_time": f"{status['elapsed_time']:.1f}s",
"avg_time_per_doc": f"{status['elapsed_time']/status['processed']:.1f}s" if status['processed'] > 0 else "0s"
}
log_cancelled = f"Processing cancelled by user after {status['elapsed_time']:.1f}s\nPartial results: {status['processed']} documents processed\nExtracted {total_entities} medical entities\nGenerated {total_fhir} FHIR resources\n"
return cancelled_text, log_cancelled, partial_results
elif status["status"] == "completed":
completed_text = f"βœ… **Processing Complete!**\nTotal processed: {status['processed']}/{status['total']}\nTotal time: {status['total_time']:.2f}s"
# Calculate final metrics
results = status.get('results', [])
total_entities = sum(len(result.get('entities', [])) for result in results)
total_fhir = sum(1 for result in results if result.get('fhir_bundle_generated', False))
final_results = {
"total_documents": status['total'],
"processed": status['processed'],
"entities_extracted": total_entities,
"fhir_resources_generated": total_fhir,
"processing_time": f"{status['total_time']:.2f}s",
"avg_time_per_doc": f"{status['total_time']/status['processed']:.2f}s" if status['processed'] > 0 else "0s"
}
log_final = f"βœ… Batch processing completed successfully!\nProcessed {status['processed']} documents in {status['total_time']:.2f}s\nExtracted {total_entities} medical entities\nGenerated {total_fhir} FHIR resources\nAverage processing time: {status['total_time']/status['processed']:.2f}s per document\n"
return completed_text, log_final, final_results
except Exception as e:
return f"❌ Error getting status: {str(e)}", "", {}